--- manual/s_overview/text/manual_fromjm.tex 2001/10/15 19:34:28 1.3 +++ manual/s_overview/text/manual_fromjm.tex 2006/04/08 01:50:49 1.5 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Introduction} @@ -95,12 +95,12 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Illustrations of the model in action} -The MITgcm has been designed and used to model a wide range of phenomena, +MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale of meters in the ocean to the global pattern of atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the kinds of problems the model has been used to study, we briefly describe some @@ -118,7 +118,7 @@ Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ temperature field obtained using the atmospheric isomorph of MITgcm run at -2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole +$2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident. There are no mountains or land-sea contrast in this calculation, @@ -158,8 +158,8 @@ solutions of a different and much more realistic kind, can be obtained. Fig. ?.? shows the surface temperature and velocity field obtained from -MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$ -grid in which the pole has been rotated by 90$^{\circ }$ on to the equator +MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a \textit{lat-lon} +grid in which the pole has been rotated by $90^{\circ }$ on to the equator (to avoid the converging of meridian in northern latitudes). 21 vertical levels are used in the vertical with a `lopped cell' representation of topography. The development and propagation of anomalously warm and cold @@ -174,10 +174,10 @@ \subsection{Global ocean circulation} -Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ +Fig.E2a shows the pattern of ocean currents at the surface of a $4^{\circ }$ global ocean model run with 15 vertical levels. Lopped cells are used to -represent topography on a regular $lat-lon$ grid extending from 70$^{\circ -}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with +represent topography on a regular \textit{lat-lon} grid extending from $70^{\circ +}N $ to $70^{\circ }S$. The model is driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The transfer properties of ocean eddies, convection and mixing is parameterized in this model. @@ -233,7 +233,7 @@ As one example of application of the MITgcm adjoint, Fig.E4 maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude -of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $ +of the overturning streamfunction shown in fig?.? at $40^{\circ }N$ and $ \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep water for the thermohaline circulations. This calculation also @@ -286,7 +286,7 @@ %notci%\input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -656,8 +656,8 @@ \end{equation} \qquad \qquad \qquad \qquad \qquad -In the above `${r}$' is the distance from the center of the earth and `$lat$ -' is latitude. +In the above `${r}$' is the distance from the center of the earth and +`\textit{lat}' is latitude. Grad and div operators in spherical coordinates are defined in appendix OPERATORS. @@ -674,7 +674,7 @@ which the vertical momentum equation is reduced to a statement of hydrostatic balance and the `traditional approximation' is made in which the Coriolis force is treated approximately and the shallow atmosphere -approximation is made.\ The MITgcm need not make the `traditional +approximation is made. MITgcm need not make the `traditional approximation'. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be relaxed - when dividing through by $ r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, @@ -1021,7 +1021,7 @@ Tangent linear and adjoint counterparts of the forward model and described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1148,7 +1148,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1364,7 +1364,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.3 2001/10/15 19:34:28 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual_fromjm.tex,v 1.5 2006/04/08 01:50:49 edhill Exp $ % $Name: $ \section{Appendix:OPERATORS}