/[MITgcm]/manual/s_overview/text/manual_fromjm.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual_fromjm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Thu Oct 11 19:36:57 2001 UTC (22 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.1: +214 -169 lines
File MIME type: application/x-tex
Changes for latex2html.

1 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
2 % $Name: $
3
4 \documentclass[12pt]{book}
5 \usepackage{amsmath}
6 \usepackage{html}
7 \usepackage{epsfig}
8 \usepackage{graphics,subfigure}
9 \usepackage{array}
10 \usepackage{multirow}
11 \usepackage{fancyhdr}
12 \usepackage{psfrag}
13
14 %TCIDATA{OutputFilter=Latex.dll}
15 %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17 %TCIDATA{Language=American English}
18
19 \fancyhead{}
20 \fancyhead[LO]{\slshape \rightmark}
21 \fancyhead[RE]{\slshape \leftmark}
22 \fancyhead[RO,LE]{\thepage}
23 \fancyfoot[CO,CE]{\today}
24 \fancyfoot[RO,LE]{ }
25 \renewcommand{\headrulewidth}{0.4pt}
26 \renewcommand{\footrulewidth}{0.4pt}
27 \setcounter{secnumdepth}{3}
28 \input{tcilatex}
29
30 \begin{document}
31
32 \tableofcontents
33
34
35 \part{MIT GCM basics}
36
37 % Section: Overview
38
39 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
40 % $Name: $
41
42 \section{Introduction}
43
44 This documentation provides the reader with the information necessary to
45 carry out numerical experiments using MITgcm. It gives a comprehensive
46 description of the continuous equations on which the model is based, the
47 numerical algorithms the model employs and a description of the associated
48 program code. Along with the hydrodynamical kernel, physical and
49 biogeochemical parameterizations of key atmospheric and oceanic processes
50 are available. A number of examples illustrating the use of the model in
51 both process and general circulation studies of the atmosphere and ocean are
52 also presented.
53
54 MITgcm has a number of novel aspects:
55
56 \begin{itemize}
57 \item it can be used to study both atmospheric and oceanic phenomena; one
58 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
59 models - see fig
60 \marginpar{
61 Fig.1 One model}\ref{fig:onemodel}
62
63 %% CNHbegin
64 %notci%\input{part1/one_model_figure}
65 %% CNHend
66
67 \item it has a non-hydrostatic capability and so can be used to study both
68 small-scale and large scale processes - see fig
69 \marginpar{
70 Fig.2 All scales}\ref{fig:all-scales}
71
72 %% CNHbegin
73 %notci%\input{part1/all_scales_figure}
74 %% CNHend
75
76 \item finite volume techniques are employed yielding an intuitive
77 discretization and support for the treatment of irregular geometries using
78 orthogonal curvilinear grids and shaved cells - see fig
79 \marginpar{
80 Fig.3 Finite volumes}\ref{fig:finite-volumes}
81
82 %% CNHbegin
83 %notci%\input{part1/fvol_figure}
84 %% CNHend
85
86 \item tangent linear and adjoint counterparts are automatically maintained
87 along with the forward model, permitting sensitivity and optimization
88 studies.
89
90 \item the model is developed to perform efficiently on a wide variety of
91 computational platforms.
92 \end{itemize}
93
94 Key publications reporting on and charting the development of the model are
95 listed in an Appendix.
96
97 We begin by briefly showing some of the results of the model in action to
98 give a feel for the wide range of problems that can be addressed using it.
99 \pagebreak
100
101 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
102 % $Name: $
103
104 \section{Illustrations of the model in action}
105
106 The MITgcm has been designed and used to model a wide range of phenomena,
107 from convection on the scale of meters in the ocean to the global pattern of
108 atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
109 kinds of problems the model has been used to study, we briefly describe some
110 of them here. A more detailed description of the underlying formulation,
111 numerical algorithm and implementation that lie behind these calculations is
112 given later. Indeed many of the illustrative examples shown below can be
113 easily reproduced: simply download the model (the minimum you need is a PC
114 running linux, together with a FORTRAN\ 77 compiler) and follow the examples
115 described in detail in the documentation.
116
117 \subsection{Global atmosphere: `Held-Suarez' benchmark}
118
119 A novel feature of MITgcm is its ability to simulate both atmospheric and
120 oceanographic flows at both small and large scales.
121
122 Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
123 temperature field obtained using the atmospheric isomorph of MITgcm run at
124 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
125 (blue) and warm air along an equatorial band (red). Fully developed
126 baroclinic eddies spawned in the northern hemisphere storm track are
127 evident. There are no mountains or land-sea contrast in this calculation,
128 but you can easily put them in. The model is driven by relaxation to a
129 radiative-convective equilibrium profile, following the description set out
130 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
131 there are no mountains or land-sea contrast.
132
133 %% CNHbegin
134 %notci%\input{part1/cubic_eddies_figure}
135 %% CNHend
136
137 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
138 globe permitting a uniform gridding and obviated the need to fourier filter.
139 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
140 grid, of which the cubed sphere is just one of many choices.
141
142 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
143 wind and meridional overturning streamfunction from a 20-level version of
144 the model. It compares favorable with more conventional spatial
145 discretization approaches.
146
147 A regular spherical lat-lon grid can also be used.
148
149 %% CNHbegin
150 %notci%\input{part1/hs_zave_u_figure}
151 %% CNHend
152
153 \subsection{Ocean gyres}
154
155 Baroclinic instability is a ubiquitous process in the ocean, as well as the
156 atmosphere. Ocean eddies play an important role in modifying the
157 hydrographic structure and current systems of the oceans. Coarse resolution
158 models of the oceans cannot resolve the eddy field and yield rather broad,
159 diffusive patterns of ocean currents. But if the resolution of our models is
160 increased until the baroclinic instability process is resolved, numerical
161 solutions of a different and much more realistic kind, can be obtained.
162
163 Fig. ?.? shows the surface temperature and velocity field obtained from
164 MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$
165 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
166 (to avoid the converging of meridian in northern latitudes). 21 vertical
167 levels are used in the vertical with a `lopped cell' representation of
168 topography. The development and propagation of anomalously warm and cold
169 eddies can be clearly been seen in the Gulf Stream region. The transport of
170 warm water northward by the mean flow of the Gulf Stream is also clearly
171 visible.
172
173 %% CNHbegin
174 %notci%\input{part1/ocean_gyres_figure}
175 %% CNHend
176
177
178 \subsection{Global ocean circulation}
179
180 Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
181 global ocean model run with 15 vertical levels. Lopped cells are used to
182 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
183 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
184 mixed boundary conditions on temperature and salinity at the surface. The
185 transfer properties of ocean eddies, convection and mixing is parameterized
186 in this model.
187
188 Fig.E2b shows the meridional overturning circulation of the global ocean in
189 Sverdrups.
190
191 %%CNHbegin
192 %notci%\input{part1/global_circ_figure}
193 %%CNHend
194
195 \subsection{Convection and mixing over topography}
196
197 Dense plumes generated by localized cooling on the continental shelf of the
198 ocean may be influenced by rotation when the deformation radius is smaller
199 than the width of the cooling region. Rather than gravity plumes, the
200 mechanism for moving dense fluid down the shelf is then through geostrophic
201 eddies. The simulation shown in the figure (blue is cold dense fluid, red is
202 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
203 trigger convection by surface cooling. The cold, dense water falls down the
204 slope but is deflected along the slope by rotation. It is found that
205 entrainment in the vertical plane is reduced when rotational control is
206 strong, and replaced by lateral entrainment due to the baroclinic
207 instability of the along-slope current.
208
209 %%CNHbegin
210 %notci%\input{part1/convect_and_topo}
211 %%CNHend
212
213 \subsection{Boundary forced internal waves}
214
215 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
216 presence of complex geometry makes it an ideal tool to study internal wave
217 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
218 barotropic tidal currents imposed through open boundary conditions.
219
220 Fig. ?.? shows the influence of cross-slope topographic variations on
221 internal wave breaking - the cross-slope velocity is in color, the density
222 contoured. The internal waves are excited by application of open boundary
223 conditions on the left.\ They propagate to the sloping boundary (represented
224 using MITgcm's finite volume spatial discretization) where they break under
225 nonhydrostatic dynamics.
226
227 %%CNHbegin
228 %notci%\input{part1/boundary_forced_waves}
229 %%CNHend
230
231 \subsection{Parameter sensitivity using the adjoint of MITgcm}
232
233 Forward and tangent linear counterparts of MITgcm are supported using an
234 `automatic adjoint compiler'. These can be used in parameter sensitivity and
235 data assimilation studies.
236
237 As one example of application of the MITgcm adjoint, Fig.E4 maps the
238 gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
239 of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $
240 \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is
241 sensitive to heat fluxes over the Labrador Sea, one of the important sources
242 of deep water for the thermohaline circulations. This calculation also
243 yields sensitivities to all other model parameters.
244
245 %%CNHbegin
246 %notci%\input{part1/adj_hf_ocean_figure}
247 %%CNHend
248
249 \subsection{Global state estimation of the ocean}
250
251 An important application of MITgcm is in state estimation of the global
252 ocean circulation. An appropriately defined `cost function', which measures
253 the departure of the model from observations (both remotely sensed and
254 insitu) over an interval of time, is minimized by adjusting `control
255 parameters' such as air-sea fluxes, the wind field, the initial conditions
256 etc. Figure ?.? shows an estimate of the time-mean surface elevation of the
257 ocean obtained by bringing the model in to consistency with altimetric and
258 in-situ observations over the period 1992-1997.
259
260 %% CNHbegin
261 %notci%\input{part1/globes_figure}
262 %% CNHend
263
264 \subsection{Ocean biogeochemical cycles}
265
266 MITgcm is being used to study global biogeochemical cycles in the ocean. For
267 example one can study the effects of interannual changes in meteorological
268 forcing and upper ocean circulation on the fluxes of carbon dioxide and
269 oxygen between the ocean and atmosphere. The figure shows the annual air-sea
270 flux of oxygen and its relation to density outcrops in the southern oceans
271 from a single year of a global, interannually varying simulation.
272
273 %%CNHbegin
274 %notci%\input{part1/biogeo_figure}
275 %%CNHend
276
277 \subsection{Simulations of laboratory experiments}
278
279 Figure ?.? shows MITgcm being used to simulate a laboratory experiment
280 enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
281 initially homogeneous tank of water ($1m$ in diameter) is driven from its
282 free surface by a rotating heated disk. The combined action of mechanical
283 and thermal forcing creates a lens of fluid which becomes baroclinically
284 unstable. The stratification and depth of penetration of the lens is
285 arrested by its instability in a process analogous to that whic sets the
286 stratification of the ACC.
287
288 %%CNHbegin
289 %notci%\input{part1/lab_figure}
290 %%CNHend
291
292 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
293 % $Name: $
294
295 \section{Continuous equations in `r' coordinates}
296
297 To render atmosphere and ocean models from one dynamical core we exploit
298 `isomorphisms' between equation sets that govern the evolution of the
299 respective fluids - see fig.4
300 \marginpar{
301 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
302 and encoded. The model variables have different interpretations depending on
303 whether the atmosphere or ocean is being studied. Thus, for example, the
304 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
305 modeling the atmosphere and height, $z$, if we are modeling the ocean.
306
307 %%CNHbegin
308 %notci%\input{part1/zandpcoord_figure.tex}
309 %%CNHend
310
311 The state of the fluid at any time is characterized by the distribution of
312 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
313 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
314 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
315 of these fields, obtained by applying the laws of classical mechanics and
316 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
317 a generic vertical coordinate, $r$, see fig.5
318 \marginpar{
319 Fig.5 The vertical coordinate of model}:
320
321 %%CNHbegin
322 %notci%\input{part1/vertcoord_figure.tex}
323 %%CNHend
324
325 \begin{equation*}
326 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
327 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
328 \text{ horizontal mtm}
329 \end{equation*}
330
331 \begin{equation*}
332 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
333 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
334 vertical mtm}
335 \end{equation*}
336
337 \begin{equation}
338 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
339 \partial r}=0\text{ continuity} \label{eq:continuous}
340 \end{equation}
341
342 \begin{equation*}
343 b=b(\theta ,S,r)\text{ equation of state}
344 \end{equation*}
345
346 \begin{equation*}
347 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
348 \end{equation*}
349
350 \begin{equation*}
351 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
352 \end{equation*}
353
354 Here:
355
356 \begin{equation*}
357 r\text{ is the vertical coordinate}
358 \end{equation*}
359
360 \begin{equation*}
361 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
362 is the total derivative}
363 \end{equation*}
364
365 \begin{equation*}
366 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
367 \text{ is the `grad' operator}
368 \end{equation*}
369 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
370 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
371 is a unit vector in the vertical
372
373 \begin{equation*}
374 t\text{ is time}
375 \end{equation*}
376
377 \begin{equation*}
378 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
379 velocity}
380 \end{equation*}
381
382 \begin{equation*}
383 \phi \text{ is the `pressure'/`geopotential'}
384 \end{equation*}
385
386 \begin{equation*}
387 \vec{\Omega}\text{ is the Earth's rotation}
388 \end{equation*}
389
390 \begin{equation*}
391 b\text{ is the `buoyancy'}
392 \end{equation*}
393
394 \begin{equation*}
395 \theta \text{ is potential temperature}
396 \end{equation*}
397
398 \begin{equation*}
399 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
400 \end{equation*}
401
402 \begin{equation*}
403 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
404 \mathbf{v}}
405 \end{equation*}
406
407 \begin{equation*}
408 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
409 \end{equation*}
410
411 \begin{equation*}
412 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
413 \end{equation*}
414
415 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
416 extensive `physics' packages for atmosphere and ocean described in Chapter 6.
417
418 \subsection{Kinematic Boundary conditions}
419
420 \subsubsection{vertical}
421
422 at fixed and moving $r$ surfaces we set (see fig.5):
423
424 \begin{equation}
425 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
426 \label{eq:fixedbc}
427 \end{equation}
428
429 \begin{equation}
430 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
431 (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
432 \end{equation}
433
434 Here
435
436 \begin{equation*}
437 R_{moving}=R_{o}+\eta
438 \end{equation*}
439 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
440 whether we are in the atmosphere or ocean) of the `moving surface' in the
441 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
442 of motion.
443
444 \subsubsection{horizontal}
445
446 \begin{equation}
447 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
448 \end{equation}
449 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
450
451 \subsection{Atmosphere}
452
453 In the atmosphere, see fig.5, we interpret:
454
455 \begin{equation}
456 r=p\text{ is the pressure} \label{eq:atmos-r}
457 \end{equation}
458
459 \begin{equation}
460 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
461 coordinates} \label{eq:atmos-omega}
462 \end{equation}
463
464 \begin{equation}
465 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
466 \end{equation}
467
468 \begin{equation}
469 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
470 \label{eq:atmos-b}
471 \end{equation}
472
473 \begin{equation}
474 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
475 \label{eq:atmos-theta}
476 \end{equation}
477
478 \begin{equation}
479 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
480 \end{equation}
481 where
482
483 \begin{equation*}
484 T\text{ is absolute temperature}
485 \end{equation*}
486 \begin{equation*}
487 p\text{ is the pressure}
488 \end{equation*}
489 \begin{eqnarray*}
490 &&z\text{ is the height of the pressure surface} \\
491 &&g\text{ is the acceleration due to gravity}
492 \end{eqnarray*}
493
494 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
495 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
496 \begin{equation}
497 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
498 \end{equation}
499 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
500 constant and $c_{p}$ the specific heat of air at constant pressure.
501
502 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
503
504 \begin{equation*}
505 R_{fixed}=p_{top}=0
506 \end{equation*}
507 In a resting atmosphere the elevation of the mountains at the bottom is
508 given by
509 \begin{equation*}
510 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
511 \end{equation*}
512 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
513 atmosphere.
514
515 The boundary conditions at top and bottom are given by:
516
517 \begin{eqnarray}
518 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
519 \label{eq:fixed-bc-atmos} \\
520 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
521 atmosphere)} \label{eq:moving-bc-atmos}
522 \end{eqnarray}
523
524 Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
525 set of atmospheric equations which, for convenience, are written out in $p$
526 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
527
528 \subsection{Ocean}
529
530 In the ocean we interpret:
531 \begin{eqnarray}
532 r &=&z\text{ is the height} \label{eq:ocean-z} \\
533 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
534 \label{eq:ocean-w} \\
535 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
536 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
537 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
538 \end{eqnarray}
539 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
540 acceleration due to gravity.\noindent
541
542 In the above
543
544 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
545
546 The surface of the ocean is given by: $R_{moving}=\eta $
547
548 The position of the resting free surface of the ocean is given by $
549 R_{o}=Z_{o}=0$.
550
551 Boundary conditions are:
552
553 \begin{eqnarray}
554 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
555 \\
556 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
557 \label{eq:moving-bc-ocean}}
558 \end{eqnarray}
559 where $\eta $ is the elevation of the free surface.
560
561 Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
562 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
563 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
564
565 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
566 Non-hydrostatic forms}
567
568 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
569
570 \begin{equation}
571 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
572 \label{eq:phi-split}
573 \end{equation}
574 and write eq(\ref{incompressible}a,b) in the form:
575
576 \begin{equation}
577 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
578 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
579 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
580 \end{equation}
581
582 \begin{equation}
583 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
584 \end{equation}
585
586 \begin{equation}
587 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
588 \partial r}=G_{\dot{r}} \label{eq:mom-w}
589 \end{equation}
590 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
591
592 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
593 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
594 terms in the momentum equations. In spherical coordinates they take the form
595 \footnote{
596 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
597 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
598 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
599 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
600 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
601 discussion:
602
603 \begin{equation}
604 \left.
605 \begin{tabular}{l}
606 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
607 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
608 \\
609 $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
610 \\
611 $+\mathcal{F}_{u}$
612 \end{tabular}
613 \ \right\} \left\{
614 \begin{tabular}{l}
615 \textit{advection} \\
616 \textit{metric} \\
617 \textit{Coriolis} \\
618 \textit{\ Forcing/Dissipation}
619 \end{tabular}
620 \ \right. \qquad \label{eq:gu-speherical}
621 \end{equation}
622
623 \begin{equation}
624 \left.
625 \begin{tabular}{l}
626 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
627 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
628 $ \\
629 $-\left\{ -2\Omega u\sin lat\right\} $ \\
630 $+\mathcal{F}_{v}$
631 \end{tabular}
632 \ \right\} \left\{
633 \begin{tabular}{l}
634 \textit{advection} \\
635 \textit{metric} \\
636 \textit{Coriolis} \\
637 \textit{\ Forcing/Dissipation}
638 \end{tabular}
639 \ \right. \qquad \label{eq:gv-spherical}
640 \end{equation}
641 \qquad \qquad \qquad \qquad \qquad
642
643 \begin{equation}
644 \left.
645 \begin{tabular}{l}
646 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
647 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
648 ${+}\underline{{2\Omega u\cos lat}}$ \\
649 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
650 \end{tabular}
651 \ \right\} \left\{
652 \begin{tabular}{l}
653 \textit{advection} \\
654 \textit{metric} \\
655 \textit{Coriolis} \\
656 \textit{\ Forcing/Dissipation}
657 \end{tabular}
658 \ \right. \label{eq:gw-spherical}
659 \end{equation}
660 \qquad \qquad \qquad \qquad \qquad
661
662 In the above `${r}$' is the distance from the center of the earth and `$lat$
663 ' is latitude.
664
665 Grad and div operators in spherical coordinates are defined in appendix
666 OPERATORS.
667 \marginpar{
668 Fig.6 Spherical polar coordinate system.}
669
670 %%CNHbegin
671 %notci%\input{part1/sphere_coord_figure.tex}
672 %%CNHend
673
674 \subsubsection{Shallow atmosphere approximation}
675
676 Most models are based on the `hydrostatic primitive equations' (HPE's) in
677 which the vertical momentum equation is reduced to a statement of
678 hydrostatic balance and the `traditional approximation' is made in which the
679 Coriolis force is treated approximately and the shallow atmosphere
680 approximation is made.\ The MITgcm need not make the `traditional
681 approximation'. To be able to support consistent non-hydrostatic forms the
682 shallow atmosphere approximation can be relaxed - when dividing through by $
683 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
684 the radius of the earth.
685
686 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
687
688 These are discussed at length in Marshall et al (1997a).
689
690 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
691 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
692 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
693 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
694 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
695 computed at all other levels by integration of the hydrostatic relation, eq(
696 \ref{eq:hydrostatic}).
697
698 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
699 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
700 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
701 contribution to the pressure field: only the terms underlined twice in Eqs. (
702 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
703 and, simultaneously, the shallow atmosphere approximation is relaxed. In
704 \textbf{QH}\ \textit{all} the metric terms are retained and the full
705 variation of the radial position of a particle monitored. The \textbf{QH}\
706 vertical momentum equation (\ref{eq:mom-w}) becomes:
707
708 \begin{equation*}
709 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
710 \end{equation*}
711 making a small correction to the hydrostatic pressure.
712
713 \textbf{QH} has good energetic credentials - they are the same as for
714 \textbf{HPE}. Importantly, however, it has the same angular momentum
715 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
716 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
717
718 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
719
720 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
721 only a quasi-non-hydrostatic atmospheric isomorph.
722
723 \paragraph{Non-hydrostatic Ocean}
724
725 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
726 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
727 three dimensional elliptic equation must be solved subject to Neumann
728 boundary conditions (see below). It is important to note that use of the
729 full \textbf{NH} does not admit any new `fast' waves in to the system - the
730 incompressible condition eq(\ref{eq:continuous})c has already filtered out
731 acoustic modes. It does, however, ensure that the gravity waves are treated
732 accurately with an exact dispersion relation. The \textbf{NH} set has a
733 complete angular momentum principle and consistent energetics - see White
734 and Bromley, 1995; Marshall et.al.\ 1997a.
735
736 \paragraph{Quasi-nonhydrostatic Atmosphere}
737
738 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
739 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
740 (but only here) by:
741
742 \begin{equation}
743 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
744 \end{equation}
745 where $p_{hy}$ is the hydrostatic pressure.
746
747 \subsubsection{Summary of equation sets supported by model}
748
749 \paragraph{Atmosphere}
750
751 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
752 compressible non-Boussinesq equations in $p-$coordinates are supported.
753
754 \subparagraph{Hydrostatic and quasi-hydrostatic}
755
756 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
757 - see eq(\ref{eq:atmos-prime}).
758
759 \subparagraph{Quasi-nonhydrostatic}
760
761 A quasi-nonhydrostatic form is also supported.
762
763 \paragraph{Ocean}
764
765 \subparagraph{Hydrostatic and quasi-hydrostatic}
766
767 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
768 equations in $z-$coordinates are supported.
769
770 \subparagraph{Non-hydrostatic}
771
772 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
773 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
774 {eq:ocean-salt}).
775
776 \subsection{Solution strategy}
777
778 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
779 NH} models is summarized in Fig.7.
780 \marginpar{
781 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
782 first solved to find the surface pressure and the hydrostatic pressure at
783 any level computed from the weight of fluid above. Under \textbf{HPE} and
784 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
785 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
786 3-d elliptic equation must be solved for the non-hydrostatic pressure before
787 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
788 stepping forward the vertical momentum equation.
789
790 %%CNHbegin
791 %notci%\input{part1/solution_strategy_figure.tex}
792 %%CNHend
793
794 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
795 course, some complication that goes with the inclusion of $\cos \phi \ $
796 Coriolis terms and the relaxation of the shallow atmosphere approximation.
797 But this leads to negligible increase in computation. In \textbf{NH}, in
798 contrast, one additional elliptic equation - a three-dimensional one - must
799 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
800 essentially negligible in the hydrostatic limit (see detailed discussion in
801 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
802 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
803
804 \subsection{Finding the pressure field}
805
806 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
807 pressure field must be obtained diagnostically. We proceed, as before, by
808 dividing the total (pressure/geo) potential in to three parts, a surface
809 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
810 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
811 writing the momentum equation as in (\ref{eq:mom-h}).
812
813 \subsubsection{Hydrostatic pressure}
814
815 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
816 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
817
818 \begin{equation*}
819 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
820 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
821 \end{equation*}
822 and so
823
824 \begin{equation}
825 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
826 \end{equation}
827
828 The model can be easily modified to accommodate a loading term (e.g
829 atmospheric pressure pushing down on the ocean's surface) by setting:
830
831 \begin{equation}
832 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
833 \end{equation}
834
835 \subsubsection{Surface pressure}
836
837 The surface pressure equation can be obtained by integrating continuity, (
838 \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
839
840 \begin{equation*}
841 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
842 }_{h}+\partial _{r}\dot{r}\right) dr=0
843 \end{equation*}
844
845 Thus:
846
847 \begin{equation*}
848 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
849 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
850 _{h}dr=0
851 \end{equation*}
852 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
853 r $. The above can be rearranged to yield, using Leibnitz's theorem:
854
855 \begin{equation}
856 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
857 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
858 \label{eq:free-surface}
859 \end{equation}
860 where we have incorporated a source term.
861
862 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
863 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
864 be written
865 \begin{equation}
866 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
867 \label{eq:phi-surf}
868 \end{equation}
869 where $b_{s}$ is the buoyancy at the surface.
870
871 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref
872 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
873 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
874 surface' and `rigid lid' approaches are available.
875
876 \subsubsection{Non-hydrostatic pressure}
877
878 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
879 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
880 (\ref{incompressible}), we deduce that:
881
882 \begin{equation}
883 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
884 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
885 \vec{\mathbf{F}} \label{eq:3d-invert}
886 \end{equation}
887
888 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
889 subject to appropriate choice of boundary conditions. This method is usually
890 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
891 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
892 the 3-d problem does not need to be solved.
893
894 \paragraph{Boundary Conditions}
895
896 We apply the condition of no normal flow through all solid boundaries - the
897 coasts (in the ocean) and the bottom:
898
899 \begin{equation}
900 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
901 \end{equation}
902 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
903 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
904 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
905 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
906 tangential component of velocity, $v_{T}$, at all solid boundaries,
907 depending on the form chosen for the dissipative terms in the momentum
908 equations - see below.
909
910 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
911
912 \begin{equation}
913 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
914 \label{eq:inhom-neumann-nh}
915 \end{equation}
916 where
917
918 \begin{equation*}
919 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
920 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
921 \end{equation*}
922 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
923 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
924 exploit classical 3D potential theory and, by introducing an appropriately
925 chosen $\delta $-function sheet of `source-charge', replace the
926 inhomogeneous boundary condition on pressure by a homogeneous one. The
927 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
928 \vec{\mathbf{F}}.$ By simultaneously setting $
929 \begin{array}{l}
930 \widehat{n}.\vec{\mathbf{F}}
931 \end{array}
932 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
933 self-consistent but simpler homogenized Elliptic problem is obtained:
934
935 \begin{equation*}
936 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
937 \end{equation*}
938 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
939 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
940 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
941
942 \begin{equation}
943 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
944 \end{equation}
945
946 If the flow is `close' to hydrostatic balance then the 3-d inversion
947 converges rapidly because $\phi _{nh}\ $is then only a small correction to
948 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
949
950 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
951 does not vanish at $r=R_{moving}$, and so refines the pressure there.
952
953 \subsection{Forcing/dissipation}
954
955 \subsubsection{Forcing}
956
957 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
958 `physics packages' described in detail in chapter ??.
959
960 \subsubsection{Dissipation}
961
962 \paragraph{Momentum}
963
964 Many forms of momentum dissipation are available in the model. Laplacian and
965 biharmonic frictions are commonly used:
966
967 \begin{equation}
968 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
969 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
970 \end{equation}
971 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
972 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
973 friction. These coefficients are the same for all velocity components.
974
975 \paragraph{Tracers}
976
977 The mixing terms for the temperature and salinity equations have a similar
978 form to that of momentum except that the diffusion tensor can be
979 non-diagonal and have varying coefficients. $\qquad $
980 \begin{equation}
981 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
982 _{h}^{4}(T,S) \label{eq:diffusion}
983 \end{equation}
984 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
985 horizontal coefficient for biharmonic diffusion. In the simplest case where
986 the subgrid-scale fluxes of heat and salt are parameterized with constant
987 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
988 reduces to a diagonal matrix with constant coefficients:
989
990 \begin{equation}
991 \qquad \qquad \qquad \qquad K=\left(
992 \begin{array}{ccc}
993 K_{h} & 0 & 0 \\
994 0 & K_{h} & 0 \\
995 0 & 0 & K_{v}
996 \end{array}
997 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
998 \end{equation}
999 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1000 coefficients. These coefficients are the same for all tracers (temperature,
1001 salinity ... ).
1002
1003 \subsection{Vector invariant form}
1004
1005 For some purposes it is advantageous to write momentum advection in eq(\ref
1006 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
1007
1008 \begin{equation}
1009 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1010 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1011 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1012 \label{eq:vi-identity}
1013 \end{equation}
1014 This permits alternative numerical treatments of the non-linear terms based
1015 on their representation as a vorticity flux. Because gradients of coordinate
1016 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1017 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1018 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1019 about the geometry is contained in the areas and lengths of the volumes used
1020 to discretize the model.
1021
1022 \subsection{Adjoint}
1023
1024 Tangent linear and adjoint counterparts of the forward model and described
1025 in Chapter 5.
1026
1027 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
1028 % $Name: $
1029
1030 \section{Appendix ATMOSPHERE}
1031
1032 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1033 coordinates}
1034
1035 \label{sect-hpe-p}
1036
1037 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1038 \begin{eqnarray}
1039 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1040 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1041 \label{eq:atmos-mom} \\
1042 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1043 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1044 \partial p} &=&0 \label{eq:atmos-cont} \\
1045 p\alpha &=&RT \label{eq:atmos-eos} \\
1046 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1047 \end{eqnarray}
1048 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1049 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1050 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1051 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1052 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1053 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1054 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1055 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1056 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1057
1058 It is convenient to cast the heat equation in terms of potential temperature
1059 $\theta $ so that it looks more like a generic conservation law.
1060 Differentiating (\ref{eq:atmos-eos}) we get:
1061 \begin{equation*}
1062 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1063 \end{equation*}
1064 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1065 c_{p}=c_{v}+R$, gives:
1066 \begin{equation}
1067 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1068 \label{eq-p-heat-interim}
1069 \end{equation}
1070 Potential temperature is defined:
1071 \begin{equation}
1072 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1073 \end{equation}
1074 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1075 we will make use of the Exner function $\Pi (p)$ which defined by:
1076 \begin{equation}
1077 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1078 \end{equation}
1079 The following relations will be useful and are easily expressed in terms of
1080 the Exner function:
1081 \begin{equation*}
1082 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1083 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1084 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1085 \frac{Dp}{Dt}
1086 \end{equation*}
1087 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1088
1089 The heat equation is obtained by noting that
1090 \begin{equation*}
1091 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1092 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1093 \end{equation*}
1094 and on substituting into (\ref{eq-p-heat-interim}) gives:
1095 \begin{equation}
1096 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1097 \label{eq:potential-temperature-equation}
1098 \end{equation}
1099 which is in conservative form.
1100
1101 For convenience in the model we prefer to step forward (\ref
1102 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1103
1104 \subsubsection{Boundary conditions}
1105
1106 The upper and lower boundary conditions are :
1107 \begin{eqnarray}
1108 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1109 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1110 \label{eq:boundary-condition-atmosphere}
1111 \end{eqnarray}
1112 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1113 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1114 surface ($\phi $ is imposed and $\omega \neq 0$).
1115
1116 \subsubsection{Splitting the geo-potential}
1117
1118 For the purposes of initialization and reducing round-off errors, the model
1119 deals with perturbations from reference (or ``standard'') profiles. For
1120 example, the hydrostatic geopotential associated with the resting atmosphere
1121 is not dynamically relevant and can therefore be subtracted from the
1122 equations. The equations written in terms of perturbations are obtained by
1123 substituting the following definitions into the previous model equations:
1124 \begin{eqnarray}
1125 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1126 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1127 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1128 \end{eqnarray}
1129 The reference state (indicated by subscript ``0'') corresponds to
1130 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1131 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1132 _{o}(p_{o})=g~Z_{topo}$, defined:
1133 \begin{eqnarray*}
1134 \theta _{o}(p) &=&f^{n}(p) \\
1135 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1136 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1137 \end{eqnarray*}
1138 %\begin{eqnarray*}
1139 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1140 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1141 %\end{eqnarray*}
1142
1143 The final form of the HPE's in p coordinates is then:
1144 \begin{eqnarray}
1145 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1146 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1147 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1148 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1149 \partial p} &=&0 \\
1150 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1151 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1152 \end{eqnarray}
1153
1154 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
1155 % $Name: $
1156
1157 \section{Appendix OCEAN}
1158
1159 \subsection{Equations of motion for the ocean}
1160
1161 We review here the method by which the standard (Boussinesq, incompressible)
1162 HPE's for the ocean written in z-coordinates are obtained. The
1163 non-Boussinesq equations for oceanic motion are:
1164 \begin{eqnarray}
1165 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1166 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1167 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1168 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1169 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1170 _{h}+\frac{\partial w}{\partial z} &=&0 \\
1171 \rho &=&\rho (\theta ,S,p) \\
1172 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1173 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1174 \end{eqnarray}
1175 These equations permit acoustics modes, inertia-gravity waves,
1176 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1177 mode. As written, they cannot be integrated forward consistently - if we
1178 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1179 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1180 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1181 therefore necessary to manipulate the system as follows. Differentiating the
1182 EOS (equation of state) gives:
1183
1184 \begin{equation}
1185 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1186 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1187 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1188 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1189 \end{equation}
1190
1191 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1192 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
1193 {eq-zns-cont} gives:
1194 \begin{equation}
1195 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1196 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1197 \end{equation}
1198 where we have used an approximation sign to indicate that we have assumed
1199 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1200 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1201 can be explicitly integrated forward:
1202 \begin{eqnarray}
1203 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1204 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1205 \label{eq-cns-hmom} \\
1206 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1207 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1208 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1209 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1210 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1211 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1212 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1213 \end{eqnarray}
1214
1215 \subsubsection{Compressible z-coordinate equations}
1216
1217 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1218 wherever it appears in a product (ie. non-linear term) - this is the
1219 `Boussinesq assumption'. The only term that then retains the full variation
1220 in $\rho $ is the gravitational acceleration:
1221 \begin{eqnarray}
1222 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1223 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1224 \label{eq-zcb-hmom} \\
1225 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1226 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1227 \label{eq-zcb-hydro} \\
1228 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1229 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1230 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1231 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1232 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1233 \end{eqnarray}
1234 These equations still retain acoustic modes. But, because the
1235 ``compressible'' terms are linearized, the pressure equation \ref
1236 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1237 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1238 These are the \emph{truly} compressible Boussinesq equations. Note that the
1239 EOS must have the same pressure dependency as the linearized pressure term,
1240 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1241 c_{s}^{2}}$, for consistency.
1242
1243 \subsubsection{`Anelastic' z-coordinate equations}
1244
1245 The anelastic approximation filters the acoustic mode by removing the
1246 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1247 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1248 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1249 continuity and EOS. A better solution is to change the dependency on
1250 pressure in the EOS by splitting the pressure into a reference function of
1251 height and a perturbation:
1252 \begin{equation*}
1253 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1254 \end{equation*}
1255 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1256 differentiating the EOS, the continuity equation then becomes:
1257 \begin{equation*}
1258 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1259 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1260 \frac{\partial w}{\partial z}=0
1261 \end{equation*}
1262 If the time- and space-scales of the motions of interest are longer than
1263 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1264 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1265 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1266 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1267 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1268 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1269 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1270 anelastic continuity equation:
1271 \begin{equation}
1272 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1273 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1274 \end{equation}
1275 A slightly different route leads to the quasi-Boussinesq continuity equation
1276 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1277 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1278 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1279 \begin{equation}
1280 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1281 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1282 \end{equation}
1283 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1284 equation if:
1285 \begin{equation}
1286 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1287 \end{equation}
1288 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1289 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1290 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1291 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1292 then:
1293 \begin{eqnarray}
1294 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1295 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1296 \label{eq-zab-hmom} \\
1297 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1298 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1299 \label{eq-zab-hydro} \\
1300 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1301 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1302 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1303 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1304 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1305 \end{eqnarray}
1306
1307 \subsubsection{Incompressible z-coordinate equations}
1308
1309 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1310 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1311 yield the ``truly'' incompressible Boussinesq equations:
1312 \begin{eqnarray}
1313 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1314 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1315 \label{eq-ztb-hmom} \\
1316 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1317 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1318 \label{eq-ztb-hydro} \\
1319 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1320 &=&0 \label{eq-ztb-cont} \\
1321 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1322 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1323 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1324 \end{eqnarray}
1325 where $\rho _{c}$ is a constant reference density of water.
1326
1327 \subsubsection{Compressible non-divergent equations}
1328
1329 The above ``incompressible'' equations are incompressible in both the flow
1330 and the density. In many oceanic applications, however, it is important to
1331 retain compressibility effects in the density. To do this we must split the
1332 density thus:
1333 \begin{equation*}
1334 \rho =\rho _{o}+\rho ^{\prime }
1335 \end{equation*}
1336 We then assert that variations with depth of $\rho _{o}$ are unimportant
1337 while the compressible effects in $\rho ^{\prime }$ are:
1338 \begin{equation*}
1339 \rho _{o}=\rho _{c}
1340 \end{equation*}
1341 \begin{equation*}
1342 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1343 \end{equation*}
1344 This then yields what we can call the semi-compressible Boussinesq
1345 equations:
1346 \begin{eqnarray}
1347 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1348 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1349 \mathcal{F}}} \label{eq:ocean-mom} \\
1350 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1351 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1352 \label{eq:ocean-wmom} \\
1353 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1354 &=&0 \label{eq:ocean-cont} \\
1355 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1356 \\
1357 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1358 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1359 \end{eqnarray}
1360 Note that the hydrostatic pressure of the resting fluid, including that
1361 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1362 dynamics.
1363
1364 Though necessary, the assumptions that go into these equations are messy
1365 since we essentially assume a different EOS for the reference density and
1366 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1367 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1368 community and referred to as the primitive equations (HPE).
1369
1370 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
1371 % $Name: $
1372
1373 \section{Appendix:OPERATORS}
1374
1375 \subsection{Coordinate systems}
1376
1377 \subsubsection{Spherical coordinates}
1378
1379 In spherical coordinates, the velocity components in the zonal, meridional
1380 and vertical direction respectively, are given by (see Fig.2) :
1381
1382 \begin{equation*}
1383 u=r\cos \phi \frac{D\lambda }{Dt}
1384 \end{equation*}
1385
1386 \begin{equation*}
1387 v=r\frac{D\phi }{Dt}\qquad
1388 \end{equation*}
1389 $\qquad \qquad \qquad \qquad $
1390
1391 \begin{equation*}
1392 \dot{r}=\frac{Dr}{Dt}
1393 \end{equation*}
1394
1395 Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1396 distance of the particle from the center of the earth, $\Omega $ is the
1397 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1398
1399 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1400 spherical coordinates:
1401
1402 \begin{equation*}
1403 \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }
1404 ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}
1405 \right)
1406 \end{equation*}
1407
1408 \begin{equation*}
1409 \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1410 \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1411 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1412 \end{equation*}
1413
1414 \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22