| 1 | % $Header$ | % $Header$ | 
| 2 | % $Name$ | % $Name$ | 
|  | %\usepackage{oldgerm} |  | 
|  | % I commented the following because it introduced excessive white space |  | 
|  | %\usepackage{palatcm}              % better PDF |  | 
|  | % page headers and footers |  | 
|  | %\pagestyle{fancy} |  | 
|  | % referencing |  | 
|  | %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |  | 
|  | %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |  | 
|  | %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |  | 
|  | %% \newcommand{\reftabno}[1]{\ref{tab:#1}} |  | 
|  | %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |  | 
|  | %% \newcommand{\reffigno}[1]{\ref{fig:#1}} |  | 
|  | % stuff for psfrag |  | 
|  | %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |  | 
|  | %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |  | 
|  | % This allows numbering of subsubsections |  | 
|  | % This changes the the chapter title |  | 
|  | %\renewcommand{\chaptername}{Section} |  | 
|  |  |  | 
| 3 |  |  | 
| 4 | \documentclass[12pt]{book} | \documentclass[12pt]{book} | 
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |  | 
| 5 | \usepackage{amsmath} | \usepackage{amsmath} | 
| 6 | \usepackage{html} | \usepackage{html} | 
| 7 | \usepackage{epsfig} | \usepackage{epsfig} | 
| 31 |  |  | 
| 32 | \tableofcontents | \tableofcontents | 
| 33 |  |  | 
|  | \pagebreak |  | 
|  |  |  | 
|  | \part{The MIT GCM basics} |  | 
| 34 |  |  | 
| 35 | % Section: Overview | % Section: Overview | 
| 36 |  |  | 
| 54 | \begin{itemize} | \begin{itemize} | 
| 55 | \item it can be used to study both atmospheric and oceanic phenomena; one | \item it can be used to study both atmospheric and oceanic phenomena; one | 
| 56 | hydrodynamical kernel is used to drive forward both atmospheric and oceanic | hydrodynamical kernel is used to drive forward both atmospheric and oceanic | 
| 57 | models - see fig.1% | models - see fig | 
| 58 | \marginpar{ | \marginpar{ | 
| 59 | Fig.1 One model}\ref{fig:onemodel} | Fig.1 One model}\ref{fig:onemodel} | 
| 60 |  |  | 
| 61 |  | %% CNHbegin | 
| 62 |  | %notci%\input{part1/one_model_figure} | 
| 63 |  | %% CNHend | 
| 64 |  |  | 
| 65 | \item it has a non-hydrostatic capability and so can be used to study both | \item it has a non-hydrostatic capability and so can be used to study both | 
| 66 | small-scale and large scale processes - see fig.2% | small-scale and large scale processes - see fig | 
| 67 | \marginpar{ | \marginpar{ | 
| 68 | Fig.2 All scales}\ref{fig:all-scales} | Fig.2 All scales}\ref{fig:all-scales} | 
| 69 |  |  | 
| 70 |  | %% CNHbegin | 
| 71 |  | %notci%\input{part1/all_scales_figure} | 
| 72 |  | %% CNHend | 
| 73 |  |  | 
| 74 | \item finite volume techniques are employed yielding an intuitive | \item finite volume techniques are employed yielding an intuitive | 
| 75 | discretization and support for the treatment of irregular geometries using | discretization and support for the treatment of irregular geometries using | 
| 76 | orthogonal curvilinear grids and shaved cells - see fig.3% | orthogonal curvilinear grids and shaved cells - see fig | 
| 77 | \marginpar{ | \marginpar{ | 
| 78 | Fig.3 Finite volumes}\ref{fig:Finite volumes} | Fig.3 Finite volumes}\ref{fig:finite-volumes} | 
| 79 |  |  | 
| 80 |  | %% CNHbegin | 
| 81 |  | %notci%\input{part1/fvol_figure} | 
| 82 |  | %% CNHend | 
| 83 |  |  | 
| 84 | \item tangent linear and adjoint counterparts are automatically maintained | \item tangent linear and adjoint counterparts are automatically maintained | 
| 85 | along with the forward model, permitting sensitivity and optimization | along with the forward model, permitting sensitivity and optimization | 
| 94 |  |  | 
| 95 | We begin by briefly showing some of the results of the model in action to | We begin by briefly showing some of the results of the model in action to | 
| 96 | give a feel for the wide range of problems that can be addressed using it. | give a feel for the wide range of problems that can be addressed using it. | 
|  | \pagebreak |  | 
| 97 |  |  | 
| 98 | % $Header$ | % $Header$ | 
| 99 | % $Name$ | % $Name$ | 
| 100 |  |  | 
| 101 | \section{Illustrations of the model in action} | \section{Illustrations of the model in action} | 
| 102 |  |  | 
| 103 | The MITgcm has been designed and used to model a wide range of phenomena, | MITgcm has been designed and used to model a wide range of phenomena, | 
| 104 | from convection on the scale of meters in the ocean to the global pattern of | from convection on the scale of meters in the ocean to the global pattern of | 
| 105 | atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the | atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the | 
| 106 | kinds of problems the model has been used to study, we briefly describe some | kinds of problems the model has been used to study, we briefly describe some | 
| 116 | A novel feature of MITgcm is its ability to simulate both atmospheric and | A novel feature of MITgcm is its ability to simulate both atmospheric and | 
| 117 | oceanographic flows at both small and large scales. | oceanographic flows at both small and large scales. | 
| 118 |  |  | 
| 119 | Fig.E1a.\ref{fig:Held-Suarez} shows an instantaneous plot of the 500$mb$ | Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
| 120 | temperature field obtained using the atmospheric isomorph of MITgcm run at | temperature field obtained using the atmospheric isomorph of MITgcm run at | 
| 121 | 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
| 122 | (blue) and warm air along an equatorial band (red). Fully developed | (blue) and warm air along an equatorial band (red). Fully developed | 
| 127 | in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - | in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - | 
| 128 | there are no mountains or land-sea contrast. | there are no mountains or land-sea contrast. | 
| 129 |  |  | 
| 130 |  | %% CNHbegin | 
| 131 |  | %notci%\input{part1/cubic_eddies_figure} | 
| 132 |  | %% CNHend | 
| 133 |  |  | 
| 134 | As described in Adcroft (2001), a `cubed sphere' is used to discretize the | As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
| 135 | globe permitting a uniform gridding and obviated the need to fourier filter. | globe permitting a uniform gridding and obviated the need to fourier filter. | 
| 136 | The `vector-invariant' form of MITgcm supports any orthogonal curvilinear | The `vector-invariant' form of MITgcm supports any orthogonal curvilinear | 
| 143 |  |  | 
| 144 | A regular spherical lat-lon grid can also be used. | A regular spherical lat-lon grid can also be used. | 
| 145 |  |  | 
| 146 |  | %% CNHbegin | 
| 147 |  | %notci%\input{part1/hs_zave_u_figure} | 
| 148 |  | %% CNHend | 
| 149 |  |  | 
| 150 | \subsection{Ocean gyres} | \subsection{Ocean gyres} | 
| 151 |  |  | 
| 152 | Baroclinic instability is a ubiquitous process in the ocean, as well as the | Baroclinic instability is a ubiquitous process in the ocean, as well as the | 
| 167 | warm water northward by the mean flow of the Gulf Stream is also clearly | warm water northward by the mean flow of the Gulf Stream is also clearly | 
| 168 | visible. | visible. | 
| 169 |  |  | 
| 170 |  | %% CNHbegin | 
| 171 |  | %notci%\input{part1/ocean_gyres_figure} | 
| 172 |  | %% CNHend | 
| 173 |  |  | 
| 174 |  |  | 
| 175 | \subsection{Global ocean circulation} | \subsection{Global ocean circulation} | 
| 176 |  |  | 
| 177 | Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ | Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ | 
| 185 | Fig.E2b shows the meridional overturning circulation of the global ocean in | Fig.E2b shows the meridional overturning circulation of the global ocean in | 
| 186 | Sverdrups. | Sverdrups. | 
| 187 |  |  | 
| 188 |  | %%CNHbegin | 
| 189 |  | %notci%\input{part1/global_circ_figure} | 
| 190 |  | %%CNHend | 
| 191 |  |  | 
| 192 | \subsection{Convection and mixing over topography} | \subsection{Convection and mixing over topography} | 
| 193 |  |  | 
| 194 | Dense plumes generated by localized cooling on the continental shelf of the | Dense plumes generated by localized cooling on the continental shelf of the | 
| 203 | strong, and replaced by lateral entrainment due to the baroclinic | strong, and replaced by lateral entrainment due to the baroclinic | 
| 204 | instability of the along-slope current. | instability of the along-slope current. | 
| 205 |  |  | 
| 206 |  | %%CNHbegin | 
| 207 |  | %notci%\input{part1/convect_and_topo} | 
| 208 |  | %%CNHend | 
| 209 |  |  | 
| 210 | \subsection{Boundary forced internal waves} | \subsection{Boundary forced internal waves} | 
| 211 |  |  | 
| 212 | The unique ability of MITgcm to treat non-hydrostatic dynamics in the | The unique ability of MITgcm to treat non-hydrostatic dynamics in the | 
| 221 | using MITgcm's finite volume spatial discretization) where they break under | using MITgcm's finite volume spatial discretization) where they break under | 
| 222 | nonhydrostatic dynamics. | nonhydrostatic dynamics. | 
| 223 |  |  | 
| 224 |  | %%CNHbegin | 
| 225 |  | %notci%\input{part1/boundary_forced_waves} | 
| 226 |  | %%CNHend | 
| 227 |  |  | 
| 228 | \subsection{Parameter sensitivity using the adjoint of MITgcm} | \subsection{Parameter sensitivity using the adjoint of MITgcm} | 
| 229 |  |  | 
| 230 | Forward and tangent linear counterparts of MITgcm are supported using an | Forward and tangent linear counterparts of MITgcm are supported using an | 
| 233 |  |  | 
| 234 | As one example of application of the MITgcm adjoint, Fig.E4 maps the | As one example of application of the MITgcm adjoint, Fig.E4 maps the | 
| 235 | gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | 
| 236 | of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $% | of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $ | 
| 237 | \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is | \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is | 
| 238 | sensitive to heat fluxes over the Labrador Sea, one of the important sources | sensitive to heat fluxes over the Labrador Sea, one of the important sources | 
| 239 | of deep water for the thermohaline circulations. This calculation also | of deep water for the thermohaline circulations. This calculation also | 
| 240 | yields sensitivities to all other model parameters. | yields sensitivities to all other model parameters. | 
| 241 |  |  | 
| 242 |  | %%CNHbegin | 
| 243 |  | %notci%\input{part1/adj_hf_ocean_figure} | 
| 244 |  | %%CNHend | 
| 245 |  |  | 
| 246 | \subsection{Global state estimation of the ocean} | \subsection{Global state estimation of the ocean} | 
| 247 |  |  | 
| 248 | An important application of MITgcm is in state estimation of the global | An important application of MITgcm is in state estimation of the global | 
| 254 | ocean obtained by bringing the model in to consistency with altimetric and | ocean obtained by bringing the model in to consistency with altimetric and | 
| 255 | in-situ observations over the period 1992-1997. | in-situ observations over the period 1992-1997. | 
| 256 |  |  | 
| 257 |  | %% CNHbegin | 
| 258 |  | %notci%\input{part1/globes_figure} | 
| 259 |  | %% CNHend | 
| 260 |  |  | 
| 261 | \subsection{Ocean biogeochemical cycles} | \subsection{Ocean biogeochemical cycles} | 
| 262 |  |  | 
| 263 | MITgcm is being used to study global biogeochemical cycles in the ocean. For | MITgcm is being used to study global biogeochemical cycles in the ocean. For | 
| 267 | flux of oxygen and its relation to density outcrops in the southern oceans | flux of oxygen and its relation to density outcrops in the southern oceans | 
| 268 | from a single year of a global, interannually varying simulation. | from a single year of a global, interannually varying simulation. | 
| 269 |  |  | 
| 270 | Chris - get figure here: http://puddle.mit.edu/\symbol{126}% | %%CNHbegin | 
| 271 | mick/biogeochem.html | %notci%\input{part1/biogeo_figure} | 
| 272 |  | %%CNHend | 
| 273 |  |  | 
| 274 | \subsection{Simulations of laboratory experiments} | \subsection{Simulations of laboratory experiments} | 
| 275 |  |  | 
| 282 | arrested by its instability in a process analogous to that whic sets the | arrested by its instability in a process analogous to that whic sets the | 
| 283 | stratification of the ACC. | stratification of the ACC. | 
| 284 |  |  | 
| 285 |  | %%CNHbegin | 
| 286 |  | %notci%\input{part1/lab_figure} | 
| 287 |  | %%CNHend | 
| 288 |  |  | 
| 289 | % $Header$ | % $Header$ | 
| 290 | % $Name$ | % $Name$ | 
| 291 |  |  | 
| 293 |  |  | 
| 294 | To render atmosphere and ocean models from one dynamical core we exploit | To render atmosphere and ocean models from one dynamical core we exploit | 
| 295 | `isomorphisms' between equation sets that govern the evolution of the | `isomorphisms' between equation sets that govern the evolution of the | 
| 296 | respective fluids - see fig.4% | respective fluids - see fig.4 | 
| 297 | \marginpar{ | \marginpar{ | 
| 298 | Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down | Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down | 
| 299 | and encoded. The model variables have different interpretations depending on | and encoded. The model variables have different interpretations depending on | 
| 301 | vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | 
| 302 | modeling the atmosphere and height, $z$, if we are modeling the ocean. | modeling the atmosphere and height, $z$, if we are modeling the ocean. | 
| 303 |  |  | 
| 304 |  | %%CNHbegin | 
| 305 |  | %notci%\input{part1/zandpcoord_figure.tex} | 
| 306 |  | %%CNHend | 
| 307 |  |  | 
| 308 | The state of the fluid at any time is characterized by the distribution of | The state of the fluid at any time is characterized by the distribution of | 
| 309 | velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a | velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a | 
| 310 | `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may | `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may | 
| 311 | depend on $\theta $, $S$, and $p$. The equations that govern the evolution | depend on $\theta $, $S$, and $p$. The equations that govern the evolution | 
| 312 | of these fields, obtained by applying the laws of classical mechanics and | of these fields, obtained by applying the laws of classical mechanics and | 
| 313 | thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | 
| 314 | a generic vertical coordinate, $r$, see fig.5% | a generic vertical coordinate, $r$, see fig.5 | 
| 315 | \marginpar{ | \marginpar{ | 
| 316 | Fig.5 The vertical coordinate of model}: | Fig.5 The vertical coordinate of model}: | 
| 317 |  |  | 
| 318 |  | %%CNHbegin | 
| 319 |  | %notci%\input{part1/vertcoord_figure.tex} | 
| 320 |  | %%CNHend | 
| 321 |  |  | 
| 322 | \begin{equation*} | \begin{equation*} | 
| 323 | \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} | 
| 324 | \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% | \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} | 
| 325 | \text{ horizontal mtm} | \text{ horizontal mtm} | 
| 326 | \end{equation*} | \end{equation*} | 
| 327 |  |  | 
| 328 | \begin{equation*} | \begin{equation*} | 
| 329 | \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% | \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ | 
| 330 | v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ | v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ | 
| 331 | vertical mtm} | vertical mtm} | 
| 332 | \end{equation*} | \end{equation*} | 
| 333 |  |  | 
| 334 | \begin{equation} | \begin{equation} | 
| 335 | \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% | \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ | 
| 336 | \partial r}=0\text{ continuity}  \label{eq:continuous} | \partial r}=0\text{ continuity}  \label{eq:continuous} | 
| 337 | \end{equation} | \end{equation} | 
| 338 |  |  | 
| 360 | \end{equation*} | \end{equation*} | 
| 361 |  |  | 
| 362 | \begin{equation*} | \begin{equation*} | 
| 363 | \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% | \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} | 
| 364 | \text{ is the `grad' operator} | \text{ is the `grad' operator} | 
| 365 | \end{equation*} | \end{equation*} | 
| 366 | with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% | with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} | 
| 367 | \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ | \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ | 
| 368 | is a unit vector in the vertical | is a unit vector in the vertical | 
| 369 |  |  | 
| 397 | \end{equation*} | \end{equation*} | 
| 398 |  |  | 
| 399 | \begin{equation*} | \begin{equation*} | 
| 400 | \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{% | \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ | 
| 401 | \mathbf{v}} | \mathbf{v}} | 
| 402 | \end{equation*} | \end{equation*} | 
| 403 |  |  | 
| 442 |  |  | 
| 443 | \begin{equation} | \begin{equation} | 
| 444 | \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow} | \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow} | 
| 445 | \end{equation}% | \end{equation} | 
| 446 | where $\vec{\mathbf{n}}$ is the normal to a solid boundary. | where $\vec{\mathbf{n}}$ is the normal to a solid boundary. | 
| 447 |  |  | 
| 448 | \subsection{Atmosphere} | \subsection{Atmosphere} | 
| 479 |  |  | 
| 480 | \begin{equation*} | \begin{equation*} | 
| 481 | T\text{ is absolute temperature} | T\text{ is absolute temperature} | 
| 482 | \end{equation*}% | \end{equation*} | 
| 483 | \begin{equation*} | \begin{equation*} | 
| 484 | p\text{ is the pressure} | p\text{ is the pressure} | 
| 485 | \end{equation*}% | \end{equation*} | 
| 486 | \begin{eqnarray*} | \begin{eqnarray*} | 
| 487 | &&z\text{ is the height of the pressure surface} \\ | &&z\text{ is the height of the pressure surface} \\ | 
| 488 | &&g\text{ is the acceleration due to gravity} | &&g\text{ is the acceleration due to gravity} | 
| 492 | the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) | the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) | 
| 493 | \begin{equation} | \begin{equation} | 
| 494 | \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner} | \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner} | 
| 495 | \end{equation}% | \end{equation} | 
| 496 | where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas | where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas | 
| 497 | constant and $c_{p}$ the specific heat of air at constant pressure. | constant and $c_{p}$ the specific heat of air at constant pressure. | 
| 498 |  |  | 
| 542 |  |  | 
| 543 | The surface of the ocean is given by: $R_{moving}=\eta $ | The surface of the ocean is given by: $R_{moving}=\eta $ | 
| 544 |  |  | 
| 545 | The position of the resting free surface of the ocean is given by $% | The position of the resting free surface of the ocean is given by $ | 
| 546 | R_{o}=Z_{o}=0$. | R_{o}=Z_{o}=0$. | 
| 547 |  |  | 
| 548 | Boundary conditions are: | Boundary conditions are: | 
| 550 | \begin{eqnarray} | \begin{eqnarray} | 
| 551 | w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean} | w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean} | 
| 552 | \\ | \\ | 
| 553 | w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) % | w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) | 
| 554 | \label{eq:moving-bc-ocean}} | \label{eq:moving-bc-ocean}} | 
| 555 | \end{eqnarray} | \end{eqnarray} | 
| 556 | where $\eta $ is the elevation of the free surface. | where $\eta $ is the elevation of the free surface. | 
| 567 | \begin{equation} | \begin{equation} | 
| 568 | \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | 
| 569 | \label{eq:phi-split} | \label{eq:phi-split} | 
| 570 | \end{equation}% | \end{equation} | 
| 571 | and write eq(\ref{incompressible}a,b) in the form: | and write eq(\ref{incompressible}a,b) in the form: | 
| 572 |  |  | 
| 573 | \begin{equation} | \begin{equation} | 
| 581 | \end{equation} | \end{equation} | 
| 582 |  |  | 
| 583 | \begin{equation} | \begin{equation} | 
| 584 | \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% | \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ | 
| 585 | \partial r}=G_{\dot{r}}  \label{eq:mom-w} | \partial r}=G_{\dot{r}}  \label{eq:mom-w} | 
| 586 | \end{equation} | \end{equation} | 
| 587 | Here $\epsilon _{nh}$ is a non-hydrostatic parameter. | Here $\epsilon _{nh}$ is a non-hydrostatic parameter. | 
| 588 |  |  | 
| 589 | The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref% | The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref | 
| 590 | {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis | {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis | 
| 591 | terms in the momentum equations. In spherical coordinates they take the form% | terms in the momentum equations. In spherical coordinates they take the form | 
| 592 | \footnote{% | \footnote{ | 
| 593 | In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms | In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms | 
| 594 | in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref% | in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref | 
| 595 | {eq:gw-spherical}) are omitted; the singly-underlined terms are included in | {eq:gw-spherical}) are omitted; the singly-underlined terms are included in | 
| 596 | the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (% | the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( | 
| 597 | \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full | \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full | 
| 598 | discussion: | discussion: | 
| 599 |  |  | 
| 605 | \\ | \\ | 
| 606 | $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ | $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ | 
| 607 | \\ | \\ | 
| 608 | $+\mathcal{F}_{u}$% | $+\mathcal{F}_{u}$ | 
| 609 | \end{tabular}% | \end{tabular} | 
| 610 | \ \right\} \left\{ | \ \right\} \left\{ | 
| 611 | \begin{tabular}{l} | \begin{tabular}{l} | 
| 612 | \textit{advection} \\ | \textit{advection} \\ | 
| 613 | \textit{metric} \\ | \textit{metric} \\ | 
| 614 | \textit{Coriolis} \\ | \textit{Coriolis} \\ | 
| 615 | \textit{\ Forcing/Dissipation}% | \textit{\ Forcing/Dissipation} | 
| 616 | \end{tabular}% | \end{tabular} | 
| 617 | \ \right. \qquad  \label{eq:gu-speherical} | \ \right. \qquad  \label{eq:gu-speherical} | 
| 618 | \end{equation} | \end{equation} | 
| 619 |  |  | 
| 624 | $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} | $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} | 
| 625 | $ \\ | $ \\ | 
| 626 | $-\left\{ -2\Omega u\sin lat\right\} $ \\ | $-\left\{ -2\Omega u\sin lat\right\} $ \\ | 
| 627 | $+\mathcal{F}_{v}$% | $+\mathcal{F}_{v}$ | 
| 628 | \end{tabular}% | \end{tabular} | 
| 629 | \ \right\} \left\{ | \ \right\} \left\{ | 
| 630 | \begin{tabular}{l} | \begin{tabular}{l} | 
| 631 | \textit{advection} \\ | \textit{advection} \\ | 
| 632 | \textit{metric} \\ | \textit{metric} \\ | 
| 633 | \textit{Coriolis} \\ | \textit{Coriolis} \\ | 
| 634 | \textit{\ Forcing/Dissipation}% | \textit{\ Forcing/Dissipation} | 
| 635 | \end{tabular}% | \end{tabular} | 
| 636 | \ \right. \qquad  \label{eq:gv-spherical} | \ \right. \qquad  \label{eq:gv-spherical} | 
| 637 | \end{equation}% | \end{equation} | 
| 638 | \qquad \qquad \qquad \qquad \qquad | \qquad \qquad \qquad \qquad \qquad | 
| 639 |  |  | 
| 640 | \begin{equation} | \begin{equation} | 
| 643 | $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ | $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ | 
| 644 | $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ | $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ | 
| 645 | ${+}\underline{{2\Omega u\cos lat}}$ \\ | ${+}\underline{{2\Omega u\cos lat}}$ \\ | 
| 646 | $\underline{\underline{\mathcal{F}_{\dot{r}}}}$% | $\underline{\underline{\mathcal{F}_{\dot{r}}}}$ | 
| 647 | \end{tabular}% | \end{tabular} | 
| 648 | \ \right\} \left\{ | \ \right\} \left\{ | 
| 649 | \begin{tabular}{l} | \begin{tabular}{l} | 
| 650 | \textit{advection} \\ | \textit{advection} \\ | 
| 651 | \textit{metric} \\ | \textit{metric} \\ | 
| 652 | \textit{Coriolis} \\ | \textit{Coriolis} \\ | 
| 653 | \textit{\ Forcing/Dissipation}% | \textit{\ Forcing/Dissipation} | 
| 654 | \end{tabular}% | \end{tabular} | 
| 655 | \ \right.  \label{eq:gw-spherical} | \ \right.  \label{eq:gw-spherical} | 
| 656 | \end{equation}% | \end{equation} | 
| 657 | \qquad \qquad \qquad \qquad \qquad | \qquad \qquad \qquad \qquad \qquad | 
| 658 |  |  | 
| 659 | In the above `${r}$' is the distance from the center of the earth and `$lat$% | In the above `${r}$' is the distance from the center of the earth and `$lat$ | 
| 660 | ' is latitude. | ' is latitude. | 
| 661 |  |  | 
| 662 | Grad and div operators in spherical coordinates are defined in appendix | Grad and div operators in spherical coordinates are defined in appendix | 
| 663 | OPERATORS.% | OPERATORS. | 
| 664 | \marginpar{ | \marginpar{ | 
| 665 | Fig.6 Spherical polar coordinate system.} | Fig.6 Spherical polar coordinate system.} | 
| 666 |  |  | 
| 667 |  | %%CNHbegin | 
| 668 |  | %notci%\input{part1/sphere_coord_figure.tex} | 
| 669 |  | %%CNHend | 
| 670 |  |  | 
| 671 | \subsubsection{Shallow atmosphere approximation} | \subsubsection{Shallow atmosphere approximation} | 
| 672 |  |  | 
| 673 | Most models are based on the `hydrostatic primitive equations' (HPE's) in | Most models are based on the `hydrostatic primitive equations' (HPE's) in | 
| 674 | which the vertical momentum equation is reduced to a statement of | which the vertical momentum equation is reduced to a statement of | 
| 675 | hydrostatic balance and the `traditional approximation' is made in which the | hydrostatic balance and the `traditional approximation' is made in which the | 
| 676 | Coriolis force is treated approximately and the shallow atmosphere | Coriolis force is treated approximately and the shallow atmosphere | 
| 677 | approximation is made.\ The MITgcm need not make the `traditional | approximation is made.  MITgcm need not make the `traditional | 
| 678 | approximation'. To be able to support consistent non-hydrostatic forms the | approximation'. To be able to support consistent non-hydrostatic forms the | 
| 679 | shallow atmosphere approximation can be relaxed - when dividing through by $% | shallow atmosphere approximation can be relaxed - when dividing through by $ | 
| 680 | r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, | r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, | 
| 681 | the radius of the earth. | the radius of the earth. | 
| 682 |  |  | 
| 689 | are neglected and `${r}$' is replaced by `$a$', the mean radius of the | are neglected and `${r}$' is replaced by `$a$', the mean radius of the | 
| 690 | earth. Once the pressure is found at one level - e.g. by inverting a 2-d | earth. Once the pressure is found at one level - e.g. by inverting a 2-d | 
| 691 | Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be | Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be | 
| 692 | computed at all other levels by integration of the hydrostatic relation, eq(% | computed at all other levels by integration of the hydrostatic relation, eq( | 
| 693 | \ref{eq:hydrostatic}). | \ref{eq:hydrostatic}). | 
| 694 |  |  | 
| 695 | In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | 
| 696 | gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | 
| 697 | \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | 
| 698 | contribution to the pressure field: only the terms underlined twice in Eqs. (% | contribution to the pressure field: only the terms underlined twice in Eqs. ( | 
| 699 | \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero | \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero | 
| 700 | and, simultaneously, the shallow atmosphere approximation is relaxed. In | and, simultaneously, the shallow atmosphere approximation is relaxed. In | 
| 701 | \textbf{QH}\ \textit{all} the metric terms are retained and the full | \textbf{QH}\ \textit{all} the metric terms are retained and the full | 
| 719 |  |  | 
| 720 | \paragraph{Non-hydrostatic Ocean} | \paragraph{Non-hydrostatic Ocean} | 
| 721 |  |  | 
| 722 | In the non-hydrostatic ocean model all terms in equations Eqs.(\ref% | In the non-hydrostatic ocean model all terms in equations Eqs.(\ref | 
| 723 | {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A | {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A | 
| 724 | three dimensional elliptic equation must be solved subject to Neumann | three dimensional elliptic equation must be solved subject to Neumann | 
| 725 | boundary conditions (see below). It is important to note that use of the | boundary conditions (see below). It is important to note that use of the | 
| 732 |  |  | 
| 733 | \paragraph{Quasi-nonhydrostatic Atmosphere} | \paragraph{Quasi-nonhydrostatic Atmosphere} | 
| 734 |  |  | 
| 735 | In the non-hydrostatic version of our atmospheric model we approximate $\dot{% | In the non-hydrostatic version of our atmospheric model we approximate $\dot{ | 
| 736 | r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) | r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) | 
| 737 | (but only here) by: | (but only here) by: | 
| 738 |  |  | 
| 739 | \begin{equation} | \begin{equation} | 
| 740 | \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w} | \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w} | 
| 741 | \end{equation}% | \end{equation} | 
| 742 | where $p_{hy}$ is the hydrostatic pressure. | where $p_{hy}$ is the hydrostatic pressure. | 
| 743 |  |  | 
| 744 | \subsubsection{Summary of equation sets supported by model} | \subsubsection{Summary of equation sets supported by model} | 
| 766 |  |  | 
| 767 | \subparagraph{Non-hydrostatic} | \subparagraph{Non-hydrostatic} | 
| 768 |  |  | 
| 769 | Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% | Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ | 
| 770 | coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref% | coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref | 
| 771 | {eq:ocean-salt}). | {eq:ocean-salt}). | 
| 772 |  |  | 
| 773 | \subsection{Solution strategy} | \subsection{Solution strategy} | 
| 774 |  |  | 
| 775 | The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% | The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ | 
| 776 | NH} models is summarized in Fig.7.% | NH} models is summarized in Fig.7. | 
| 777 | \marginpar{ | \marginpar{ | 
| 778 | Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is | Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is | 
| 779 | first solved to find the surface pressure and the hydrostatic pressure at | first solved to find the surface pressure and the hydrostatic pressure at | 
| 784 | stepping forward the horizontal momentum equations; $\dot{r}$ is found by | stepping forward the horizontal momentum equations; $\dot{r}$ is found by | 
| 785 | stepping forward the vertical momentum equation. | stepping forward the vertical momentum equation. | 
| 786 |  |  | 
| 787 |  | %%CNHbegin | 
| 788 |  | %notci%\input{part1/solution_strategy_figure.tex} | 
| 789 |  | %%CNHend | 
| 790 |  |  | 
| 791 | There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
| 792 | course, some complication that goes with the inclusion of $\cos \phi \ $% | course, some complication that goes with the inclusion of $\cos \phi \ $ | 
| 793 | Coriolis terms and the relaxation of the shallow atmosphere approximation. | Coriolis terms and the relaxation of the shallow atmosphere approximation. | 
| 794 | But this leads to negligible increase in computation. In \textbf{NH}, in | But this leads to negligible increase in computation. In \textbf{NH}, in | 
| 795 | contrast, one additional elliptic equation - a three-dimensional one - must | contrast, one additional elliptic equation - a three-dimensional one - must | 
| 813 | vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: | vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: | 
| 814 |  |  | 
| 815 | \begin{equation*} | \begin{equation*} | 
| 816 | \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% | \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} | 
| 817 | \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr | \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr | 
| 818 | \end{equation*} | \end{equation*} | 
| 819 | and so | and so | 
| 831 |  |  | 
| 832 | \subsubsection{Surface pressure} | \subsubsection{Surface pressure} | 
| 833 |  |  | 
| 834 | The surface pressure equation can be obtained by integrating continuity, (% | The surface pressure equation can be obtained by integrating continuity, ( | 
| 835 | \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ | \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ | 
| 836 |  |  | 
| 837 | \begin{equation*} | \begin{equation*} | 
| 838 | \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% | \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} | 
| 839 | }_{h}+\partial _{r}\dot{r}\right) dr=0 | }_{h}+\partial _{r}\dot{r}\right) dr=0 | 
| 840 | \end{equation*} | \end{equation*} | 
| 841 |  |  | 
| 843 |  |  | 
| 844 | \begin{equation*} | \begin{equation*} | 
| 845 | \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta | \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta | 
| 846 | +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% | +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} | 
| 847 | _{h}dr=0 | _{h}dr=0 | 
| 848 | \end{equation*} | \end{equation*} | 
| 849 | where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% | where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ | 
| 850 | r $. The above can be rearranged to yield, using Leibnitz's theorem: | r $. The above can be rearranged to yield, using Leibnitz's theorem: | 
| 851 |  |  | 
| 852 | \begin{equation} | \begin{equation} | 
| 853 | \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot | \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot | 
| 854 | \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} | \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} | 
| 855 | \label{eq:free-surface} | \label{eq:free-surface} | 
| 856 | \end{equation}% | \end{equation} | 
| 857 | where we have incorporated a source term. | where we have incorporated a source term. | 
| 858 |  |  | 
| 859 | Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | 
| 862 | \begin{equation} | \begin{equation} | 
| 863 | \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) | \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) | 
| 864 | \label{eq:phi-surf} | \label{eq:phi-surf} | 
| 865 | \end{equation}% | \end{equation} | 
| 866 | where $b_{s}$ is the buoyancy at the surface. | where $b_{s}$ is the buoyancy at the surface. | 
| 867 |  |  | 
| 868 | In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref% | In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref | 
| 869 | {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d | {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d | 
| 870 | elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free | elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free | 
| 871 | surface' and `rigid lid' approaches are available. | surface' and `rigid lid' approaches are available. | 
| 872 |  |  | 
| 873 | \subsubsection{Non-hydrostatic pressure} | \subsubsection{Non-hydrostatic pressure} | 
| 874 |  |  | 
| 875 | Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% | Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ | 
| 876 | \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation | \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation | 
| 877 | (\ref{incompressible}), we deduce that: | (\ref{incompressible}), we deduce that: | 
| 878 |  |  | 
| 879 | \begin{equation} | \begin{equation} | 
| 880 | \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% | \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ | 
| 881 | \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% | \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . | 
| 882 | \vec{\mathbf{F}}  \label{eq:3d-invert} | \vec{\mathbf{F}}  \label{eq:3d-invert} | 
| 883 | \end{equation} | \end{equation} | 
| 884 |  |  | 
| 898 | \end{equation} | \end{equation} | 
| 899 | where $\widehat{n}$ is a vector of unit length normal to the boundary. The | where $\widehat{n}$ is a vector of unit length normal to the boundary. The | 
| 900 | kinematic condition (\ref{nonormalflow}) is also applied to the vertical | kinematic condition (\ref{nonormalflow}) is also applied to the vertical | 
| 901 | velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% | velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ | 
| 902 | \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the | \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the | 
| 903 | tangential component of velocity, $v_{T}$, at all solid boundaries, | tangential component of velocity, $v_{T}$, at all solid boundaries, | 
| 904 | depending on the form chosen for the dissipative terms in the momentum | depending on the form chosen for the dissipative terms in the momentum | 
| 915 | \begin{equation*} | \begin{equation*} | 
| 916 | \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi | \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi | 
| 917 | _{s}+\mathbf{\nabla }\phi _{hyd}\right) | _{s}+\mathbf{\nabla }\phi _{hyd}\right) | 
| 918 | \end{equation*}% | \end{equation*} | 
| 919 | presenting inhomogeneous Neumann boundary conditions to the Elliptic problem | presenting inhomogeneous Neumann boundary conditions to the Elliptic problem | 
| 920 | (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can | (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can | 
| 921 | exploit classical 3D potential theory and, by introducing an appropriately | exploit classical 3D potential theory and, by introducing an appropriately | 
| 922 | chosen $\delta $-function sheet of `source-charge', replace the | chosen $\delta $-function sheet of `source-charge', replace the | 
| 923 | inhomogeneous boundary condition on pressure by a homogeneous one. The | inhomogeneous boundary condition on pressure by a homogeneous one. The | 
| 924 | source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $% | source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ | 
| 925 | \vec{\mathbf{F}}.$ By simultaneously setting $% | \vec{\mathbf{F}}.$ By simultaneously setting $ | 
| 926 | \begin{array}{l} | \begin{array}{l} | 
| 927 | \widehat{n}.\vec{\mathbf{F}}% | \widehat{n}.\vec{\mathbf{F}} | 
| 928 | \end{array}% | \end{array} | 
| 929 | =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following | =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following | 
| 930 | self-consistent but simpler homogenized Elliptic problem is obtained: | self-consistent but simpler homogenized Elliptic problem is obtained: | 
| 931 |  |  | 
| 932 | \begin{equation*} | \begin{equation*} | 
| 933 | \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad | \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad | 
| 934 | \end{equation*}% | \end{equation*} | 
| 935 | where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such | where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such | 
| 936 | that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% | that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref | 
| 937 | {eq:inhom-neumann-nh}) the modified boundary condition becomes: | {eq:inhom-neumann-nh}) the modified boundary condition becomes: | 
| 938 |  |  | 
| 939 | \begin{equation} | \begin{equation} | 
| 962 | biharmonic frictions are commonly used: | biharmonic frictions are commonly used: | 
| 963 |  |  | 
| 964 | \begin{equation} | \begin{equation} | 
| 965 | D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% | D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} | 
| 966 | +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation} | +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation} | 
| 967 | \end{equation} | \end{equation} | 
| 968 | where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity | where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity | 
| 973 |  |  | 
| 974 | The mixing terms for the temperature and salinity equations have a similar | The mixing terms for the temperature and salinity equations have a similar | 
| 975 | form to that of momentum except that the diffusion tensor can be | form to that of momentum except that the diffusion tensor can be | 
| 976 | non-diagonal and have varying coefficients. $\qquad $% | non-diagonal and have varying coefficients. $\qquad $ | 
| 977 | \begin{equation} | \begin{equation} | 
| 978 | D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | 
| 979 | _{h}^{4}(T,S)  \label{eq:diffusion} | _{h}^{4}(T,S)  \label{eq:diffusion} | 
| 980 | \end{equation} | \end{equation} | 
| 981 | where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% | where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ | 
| 982 | horizontal coefficient for biharmonic diffusion. In the simplest case where | horizontal coefficient for biharmonic diffusion. In the simplest case where | 
| 983 | the subgrid-scale fluxes of heat and salt are parameterized with constant | the subgrid-scale fluxes of heat and salt are parameterized with constant | 
| 984 | horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, | horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, | 
| 989 | \begin{array}{ccc} | \begin{array}{ccc} | 
| 990 | K_{h} & 0 & 0 \\ | K_{h} & 0 & 0 \\ | 
| 991 | 0 & K_{h} & 0 \\ | 0 & K_{h} & 0 \\ | 
| 992 | 0 & 0 & K_{v}% | 0 & 0 & K_{v} | 
| 993 | \end{array} | \end{array} | 
| 994 | \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor} | \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor} | 
| 995 | \end{equation} | \end{equation} | 
| 999 |  |  | 
| 1000 | \subsection{Vector invariant form} | \subsection{Vector invariant form} | 
| 1001 |  |  | 
| 1002 | For some purposes it is advantageous to write momentum advection in eq(\ref% | For some purposes it is advantageous to write momentum advection in eq(\ref | 
| 1003 | {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: | {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: | 
| 1004 |  |  | 
| 1005 | \begin{equation} | \begin{equation} | 
| 1006 | \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% | \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} | 
| 1007 | +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % | +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla | 
| 1008 | \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] | \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] | 
| 1009 | \label{eq:vi-identity} | \label{eq:vi-identity} | 
| 1010 | \end{equation}% | \end{equation} | 
| 1011 | This permits alternative numerical treatments of the non-linear terms based | This permits alternative numerical treatments of the non-linear terms based | 
| 1012 | on their representation as a vorticity flux. Because gradients of coordinate | on their representation as a vorticity flux. Because gradients of coordinate | 
| 1013 | vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit | vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit | 
| 1014 | representation of the metric terms in (\ref{eq:gu-speherical}), (\ref% | representation of the metric terms in (\ref{eq:gu-speherical}), (\ref | 
| 1015 | {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information | {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information | 
| 1016 | about the geometry is contained in the areas and lengths of the volumes used | about the geometry is contained in the areas and lengths of the volumes used | 
| 1017 | to discretize the model. | to discretize the model. | 
| 1033 |  |  | 
| 1034 | The hydrostatic primitive equations (HPEs) in p-coordinates are: | The hydrostatic primitive equations (HPEs) in p-coordinates are: | 
| 1035 | \begin{eqnarray} | \begin{eqnarray} | 
| 1036 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1037 | _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} | _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} | 
| 1038 | \label{eq:atmos-mom} \\ | \label{eq:atmos-mom} \\ | 
| 1039 | \frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\ | \frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\ | 
| 1040 | \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% | \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
| 1041 | \partial p} &=&0  \label{eq:atmos-cont} \\ | \partial p} &=&0  \label{eq:atmos-cont} \\ | 
| 1042 | p\alpha &=&RT  \label{eq:atmos-eos} \\ | p\alpha &=&RT  \label{eq:atmos-eos} \\ | 
| 1043 | c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat} | c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat} | 
| 1044 | \end{eqnarray}% | \end{eqnarray} | 
| 1045 | where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | 
| 1046 | surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot | surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot | 
| 1047 | \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | 
| 1048 | derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is | derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is | 
| 1049 | the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% | the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp | 
| 1050 | }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref% | }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref | 
| 1051 | {eq:atmos-heat}) is the first law of thermodynamics where internal energy $% | {eq:atmos-heat}) is the first law of thermodynamics where internal energy $ | 
| 1052 | e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% | e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ | 
| 1053 | p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. | p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. | 
| 1054 |  |  | 
| 1055 | It is convenient to cast the heat equation in terms of potential temperature | It is convenient to cast the heat equation in terms of potential temperature | 
| 1057 | Differentiating (\ref{eq:atmos-eos}) we get: | Differentiating (\ref{eq:atmos-eos}) we get: | 
| 1058 | \begin{equation*} | \begin{equation*} | 
| 1059 | p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} | p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} | 
| 1060 | \end{equation*}% | \end{equation*} | 
| 1061 | which, when added to the heat equation (\ref{eq:atmos-heat}) and using $% | which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ | 
| 1062 | c_{p}=c_{v}+R$, gives: | c_{p}=c_{v}+R$, gives: | 
| 1063 | \begin{equation} | \begin{equation} | 
| 1064 | c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} | c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} | 
| 1065 | \label{eq-p-heat-interim} | \label{eq-p-heat-interim} | 
| 1066 | \end{equation}% | \end{equation} | 
| 1067 | Potential temperature is defined: | Potential temperature is defined: | 
| 1068 | \begin{equation} | \begin{equation} | 
| 1069 | \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp} | \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp} | 
| 1070 | \end{equation}% | \end{equation} | 
| 1071 | where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience | where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience | 
| 1072 | we will make use of the Exner function $\Pi (p)$ which defined by: | we will make use of the Exner function $\Pi (p)$ which defined by: | 
| 1073 | \begin{equation} | \begin{equation} | 
| 1074 | \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner} | \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner} | 
| 1075 | \end{equation}% | \end{equation} | 
| 1076 | The following relations will be useful and are easily expressed in terms of | The following relations will be useful and are easily expressed in terms of | 
| 1077 | the Exner function: | the Exner function: | 
| 1078 | \begin{equation*} | \begin{equation*} | 
| 1079 | c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi | c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi | 
| 1080 | }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% | }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ | 
| 1081 | \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% | \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} | 
| 1082 | \frac{Dp}{Dt} | \frac{Dp}{Dt} | 
| 1083 | \end{equation*}% | \end{equation*} | 
| 1084 | where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. | where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. | 
| 1085 |  |  | 
| 1086 | The heat equation is obtained by noting that | The heat equation is obtained by noting that | 
| 1095 | \end{equation} | \end{equation} | 
| 1096 | which is in conservative form. | which is in conservative form. | 
| 1097 |  |  | 
| 1098 | For convenience in the model we prefer to step forward (\ref% | For convenience in the model we prefer to step forward (\ref | 
| 1099 | {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). | {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). | 
| 1100 |  |  | 
| 1101 | \subsubsection{Boundary conditions} | \subsubsection{Boundary conditions} | 
| 1139 |  |  | 
| 1140 | The final form of the HPE's in p coordinates is then: | The final form of the HPE's in p coordinates is then: | 
| 1141 | \begin{eqnarray} | \begin{eqnarray} | 
| 1142 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1143 | _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ | _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ | 
| 1144 | \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ | \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ | 
| 1145 | \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% | \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
| 1146 | \partial p} &=&0 \\ | \partial p} &=&0 \\ | 
| 1147 | \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ | \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ | 
| 1148 | \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime} | \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime} | 
| 1159 | HPE's for the ocean written in z-coordinates are obtained. The | HPE's for the ocean written in z-coordinates are obtained. The | 
| 1160 | non-Boussinesq equations for oceanic motion are: | non-Boussinesq equations for oceanic motion are: | 
| 1161 | \begin{eqnarray} | \begin{eqnarray} | 
| 1162 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1163 | _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ | _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ | 
| 1164 | \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
| 1165 | &=&\epsilon _{nh}\mathcal{F}_{w} \\ | &=&\epsilon _{nh}\mathcal{F}_{w} \\ | 
| 1166 | \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% | \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} | 
| 1167 | _{h}+\frac{\partial w}{\partial z} &=&0 \\ | _{h}+\frac{\partial w}{\partial z} &=&0 \\ | 
| 1168 | \rho &=&\rho (\theta ,S,p) \\ | \rho &=&\rho (\theta ,S,p) \\ | 
| 1169 | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ | 
| 1170 | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq} | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq} | 
| 1171 | \end{eqnarray}% | \end{eqnarray} | 
| 1172 | These equations permit acoustics modes, inertia-gravity waves, | These equations permit acoustics modes, inertia-gravity waves, | 
| 1173 | non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline | non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline | 
| 1174 | mode. As written, they cannot be integrated forward consistently - if we | mode. As written, they cannot be integrated forward consistently - if we | 
| 1175 | step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be | step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be | 
| 1176 | consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref% | consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref | 
| 1177 | {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is | {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is | 
| 1178 | therefore necessary to manipulate the system as follows. Differentiating the | therefore necessary to manipulate the system as follows. Differentiating the | 
| 1179 | EOS (equation of state) gives: | EOS (equation of state) gives: | 
| 1186 | \end{equation} | \end{equation} | 
| 1187 |  |  | 
| 1188 | Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the | Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the | 
| 1189 | reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref% | reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref | 
| 1190 | {eq-zns-cont} gives: | {eq-zns-cont} gives: | 
| 1191 | \begin{equation} | \begin{equation} | 
| 1192 | \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% | \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
| 1193 | v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure} | v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure} | 
| 1194 | \end{equation} | \end{equation} | 
| 1195 | where we have used an approximation sign to indicate that we have assumed | where we have used an approximation sign to indicate that we have assumed | 
| 1197 | Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that | Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that | 
| 1198 | can be explicitly integrated forward: | can be explicitly integrated forward: | 
| 1199 | \begin{eqnarray} | \begin{eqnarray} | 
| 1200 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1201 | _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1202 | \label{eq-cns-hmom} \\ | \label{eq-cns-hmom} \\ | 
| 1203 | \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
| 1204 | &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\ | &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\ | 
| 1205 | \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% | \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
| 1206 | v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\ | v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\ | 
| 1207 | \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\ | \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\ | 
| 1208 | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\ | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\ | 
| 1216 | `Boussinesq assumption'. The only term that then retains the full variation | `Boussinesq assumption'. The only term that then retains the full variation | 
| 1217 | in $\rho $ is the gravitational acceleration: | in $\rho $ is the gravitational acceleration: | 
| 1218 | \begin{eqnarray} | \begin{eqnarray} | 
| 1219 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1220 | _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1221 | \label{eq-zcb-hmom} \\ | \label{eq-zcb-hmom} \\ | 
| 1222 | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} | 
| 1223 | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1224 | \label{eq-zcb-hydro} \\ | \label{eq-zcb-hydro} \\ | 
| 1225 | \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{% | \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ | 
| 1226 | \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\ | \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\ | 
| 1227 | \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\ | \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\ | 
| 1228 | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\ | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\ | 
| 1229 | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt} | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt} | 
| 1230 | \end{eqnarray} | \end{eqnarray} | 
| 1231 | These equations still retain acoustic modes. But, because the | These equations still retain acoustic modes. But, because the | 
| 1232 | ``compressible'' terms are linearized, the pressure equation \ref% | ``compressible'' terms are linearized, the pressure equation \ref | 
| 1233 | {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent | {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent | 
| 1234 | term appears as a Helmholtz term in the non-hydrostatic pressure equation). | term appears as a Helmholtz term in the non-hydrostatic pressure equation). | 
| 1235 | These are the \emph{truly} compressible Boussinesq equations. Note that the | These are the \emph{truly} compressible Boussinesq equations. Note that the | 
| 1236 | EOS must have the same pressure dependency as the linearized pressure term, | EOS must have the same pressure dependency as the linearized pressure term, | 
| 1237 | ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{% | ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ | 
| 1238 | c_{s}^{2}}$, for consistency. | c_{s}^{2}}$, for consistency. | 
| 1239 |  |  | 
| 1240 | \subsubsection{`Anelastic' z-coordinate equations} | \subsubsection{`Anelastic' z-coordinate equations} | 
| 1241 |  |  | 
| 1242 | The anelastic approximation filters the acoustic mode by removing the | The anelastic approximation filters the acoustic mode by removing the | 
| 1243 | time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}% | time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} | 
| 1244 | ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}% | ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} | 
| 1245 | \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between | \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between | 
| 1246 | continuity and EOS. A better solution is to change the dependency on | continuity and EOS. A better solution is to change the dependency on | 
| 1247 | pressure in the EOS by splitting the pressure into a reference function of | pressure in the EOS by splitting the pressure into a reference function of | 
| 1252 | Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from | Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from | 
| 1253 | differentiating the EOS, the continuity equation then becomes: | differentiating the EOS, the continuity equation then becomes: | 
| 1254 | \begin{equation*} | \begin{equation*} | 
| 1255 | \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% | \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ | 
| 1256 | Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% | Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ | 
| 1257 | \frac{\partial w}{\partial z}=0 | \frac{\partial w}{\partial z}=0 | 
| 1258 | \end{equation*} | \end{equation*} | 
| 1259 | If the time- and space-scales of the motions of interest are longer than | If the time- and space-scales of the motions of interest are longer than | 
| 1260 | those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% | those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, | 
| 1261 | \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and | \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and | 
| 1262 | $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{% | $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ | 
| 1263 | Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta | Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta | 
| 1264 | ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon | ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon | 
| 1265 | _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation | _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation | 
| 1266 | and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the | and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the | 
| 1267 | anelastic continuity equation: | anelastic continuity equation: | 
| 1268 | \begin{equation} | \begin{equation} | 
| 1269 | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-% | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- | 
| 1270 | \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1} | \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1} | 
| 1271 | \end{equation} | \end{equation} | 
| 1272 | A slightly different route leads to the quasi-Boussinesq continuity equation | A slightly different route leads to the quasi-Boussinesq continuity equation | 
| 1273 | where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+% | where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ | 
| 1274 | \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }% | \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } | 
| 1275 | _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: | _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: | 
| 1276 | \begin{equation} | \begin{equation} | 
| 1277 | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ | 
| 1278 | \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2} | \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2} | 
| 1279 | \end{equation} | \end{equation} | 
| 1280 | Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same | Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same | 
| 1283 | \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} | \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} | 
| 1284 | \end{equation} | \end{equation} | 
| 1285 | Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ | Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ | 
| 1286 | and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{% | and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ | 
| 1287 | g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The | g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The | 
| 1288 | full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are | full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are | 
| 1289 | then: | then: | 
| 1290 | \begin{eqnarray} | \begin{eqnarray} | 
| 1291 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1292 | _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1293 | \label{eq-zab-hmom} \\ | \label{eq-zab-hmom} \\ | 
| 1294 | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} | 
| 1295 | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1296 | \label{eq-zab-hydro} \\ | \label{eq-zab-hydro} \\ | 
| 1297 | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ | 
| 1298 | \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\ | \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\ | 
| 1299 | \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\ | \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\ | 
| 1300 | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\ | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\ | 
| 1307 | technically, to also remove the dependence of $\rho $ on $p_{o}$. This would | technically, to also remove the dependence of $\rho $ on $p_{o}$. This would | 
| 1308 | yield the ``truly'' incompressible Boussinesq equations: | yield the ``truly'' incompressible Boussinesq equations: | 
| 1309 | \begin{eqnarray} | \begin{eqnarray} | 
| 1310 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1311 | _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1312 | \label{eq-ztb-hmom} \\ | \label{eq-ztb-hmom} \\ | 
| 1313 | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}% | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} | 
| 1314 | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1315 | \label{eq-ztb-hydro} \\ | \label{eq-ztb-hydro} \\ | 
| 1316 | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} | \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} | 
| 1329 | density thus: | density thus: | 
| 1330 | \begin{equation*} | \begin{equation*} | 
| 1331 | \rho =\rho _{o}+\rho ^{\prime } | \rho =\rho _{o}+\rho ^{\prime } | 
| 1332 | \end{equation*}% | \end{equation*} | 
| 1333 | We then assert that variations with depth of $\rho _{o}$ are unimportant | We then assert that variations with depth of $\rho _{o}$ are unimportant | 
| 1334 | while the compressible effects in $\rho ^{\prime }$ are: | while the compressible effects in $\rho ^{\prime }$ are: | 
| 1335 | \begin{equation*} | \begin{equation*} | 
| 1336 | \rho _{o}=\rho _{c} | \rho _{o}=\rho _{c} | 
| 1337 | \end{equation*}% | \end{equation*} | 
| 1338 | \begin{equation*} | \begin{equation*} | 
| 1339 | \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} | \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} | 
| 1340 | \end{equation*}% | \end{equation*} | 
| 1341 | This then yields what we can call the semi-compressible Boussinesq | This then yields what we can call the semi-compressible Boussinesq | 
| 1342 | equations: | equations: | 
| 1343 | \begin{eqnarray} | \begin{eqnarray} | 
| 1344 | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1345 | _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% | _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ | 
| 1346 | \mathcal{F}}}  \label{eq:ocean-mom} \\ | \mathcal{F}}}  \label{eq:ocean-mom} \\ | 
| 1347 | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho | \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho | 
| 1348 | _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1353 | \\ | \\ | 
| 1354 | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\ | \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\ | 
| 1355 | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt} | \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt} | 
| 1356 | \end{eqnarray}% | \end{eqnarray} | 
| 1357 | Note that the hydrostatic pressure of the resting fluid, including that | Note that the hydrostatic pressure of the resting fluid, including that | 
| 1358 | associated with $\rho _{c}$, is subtracted out since it has no effect on the | associated with $\rho _{c}$, is subtracted out since it has no effect on the | 
| 1359 | dynamics. | dynamics. | 
| 1397 | spherical coordinates: | spherical coordinates: | 
| 1398 |  |  | 
| 1399 | \begin{equation*} | \begin{equation*} | 
| 1400 | \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% | \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda } | 
| 1401 | ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% | ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r} | 
| 1402 | \right) | \right) | 
| 1403 | \end{equation*} | \end{equation*} | 
| 1404 |  |  |