--- manual/s_overview/text/manual.tex 2001/11/13 20:13:07 1.9 +++ manual/s_overview/text/manual.tex 2001/11/13 20:35:51 1.10 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Introduction} @@ -89,7 +89,7 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -102,7 +102,7 @@ numerical algorithm and implementation that lie behind these calculations is given later. Indeed many of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you need is a PC -running linux, together with a FORTRAN\ 77 compiler) and follow the examples +running Linux, together with a FORTRAN\ 77 compiler) and follow the examples described in detail in the documentation. \subsection{Global atmosphere: `Held-Suarez' benchmark} @@ -126,7 +126,7 @@ %% CNHend As described in Adcroft (2001), a `cubed sphere' is used to discretize the -globe permitting a uniform gridding and obviated the need to Fourier filter. +globe permitting a uniform griding and obviated the need to Fourier filter. The `vector-invariant' form of MITgcm supports any orthogonal curvilinear grid, of which the cubed sphere is just one of many choices. @@ -231,7 +231,7 @@ As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude -of the overturning streamfunction shown in figure \ref{fig:large-scale-circ} +of the overturning stream-function shown in figure \ref{fig:large-scale-circ} at 60$^{\circ }$N and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over a 100 year period. We see that $J$ is @@ -248,7 +248,7 @@ An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined `cost function', which measures the departure of the model from observations (both remotely sensed and -insitu) over an interval of time, is minimized by adjusting `control +in-situ) over an interval of time, is minimized by adjusting `control parameters' such as air-sea fluxes, the wind field, the initial conditions etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean surface elevation of the ocean obtained by bringing the model in to @@ -277,7 +277,7 @@ \subsection{Simulations of laboratory experiments} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a -laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An +laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water ($1m$ in diameter) is driven from its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of fluid which becomes baroclinically @@ -289,7 +289,7 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -432,7 +432,7 @@ \begin{equation} \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ -(oceansurface,bottomoftheatmosphere)} \label{eq:movingbc} +(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} \end{equation} Here @@ -1028,7 +1028,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1155,7 +1155,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1178,7 +1178,7 @@ \label{eq:non-boussinesq} \end{eqnarray} These equations permit acoustics modes, inertia-gravity waves, -non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline +non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref @@ -1371,7 +1371,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $ % $Name: $ \section{Appendix:OPERATORS}