--- manual/s_overview/text/manual.tex 2001/10/25 12:06:56 1.7 +++ manual/s_overview/text/manual.tex 2001/10/25 15:24:01 1.8 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Introduction} @@ -89,7 +89,7 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -289,7 +289,7 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -326,31 +326,33 @@ \begin{equation*} \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} -\text{ horizontal mtm} +\text{ horizontal mtm} \label{eq:horizontal_mtm} \end{equation*} -\begin{equation*} +\begin{equation} \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ -vertical mtm} -\end{equation*} +vertical mtm} \label{eq:vertical_mtm} +\end{equation} \begin{equation} \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ -\partial r}=0\text{ continuity} \label{eq:continuous} +\partial r}=0\text{ continuity} \label{eq:continuity} \end{equation} -\begin{equation*} -b=b(\theta ,S,r)\text{ equation of state} -\end{equation*} +\begin{equation} +b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state} +\end{equation} -\begin{equation*} +\begin{equation} \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} -\end{equation*} +\label{eq:potential_temperature} +\end{equation} -\begin{equation*} +\begin{equation} \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} -\end{equation*} +\label{eq:humidtity_salt} +\end{equation} Here: @@ -523,8 +525,8 @@ atmosphere)} \label{eq:moving-bc-atmos} \end{eqnarray} -Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent -set of atmospheric equations which, for convenience, are written out in $p$ +Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) +yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). \subsection{Ocean} @@ -560,7 +562,8 @@ \end{eqnarray} where $\eta $ is the elevation of the free surface. -Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations +Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set +of oceanic equations which, for convenience, are written out in $z$ coordinates in Appendix Ocean - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). @@ -573,7 +576,7 @@ \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) \label{eq:phi-split} \end{equation} -and write eq(\ref{incompressible}a,b) in the form: +and write eq(\ref{eq:incompressible}) in the form: \begin{equation} \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi @@ -666,8 +669,6 @@ Grad and div operators in spherical coordinates are defined in appendix OPERATORS. -\marginpar{ -Fig.6 Spherical polar coordinate system.} %%CNHbegin \input{part1/sphere_coord_figure.tex} @@ -730,7 +731,7 @@ three dimensional elliptic equation must be solved subject to Neumann boundary conditions (see below). It is important to note that use of the full \textbf{NH} does not admit any new `fast' waves in to the system - the -incompressible condition eq(\ref{eq:continuous})c has already filtered out +incompressible condition eq(\ref{eq:continuity}) has already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an exact dispersion relation. The \textbf{NH} set has a complete angular momentum principle and consistent energetics - see White @@ -779,9 +780,8 @@ \subsection{Solution strategy} The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ -NH} models is summarized in Fig.7. -\marginpar{ -Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is +NH} models is summarized in Figure \ref{fig:solution-strategy}. +Under all dynamics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level computed from the weight of fluid above. Under \textbf{HPE} and \textbf{QH} dynamics, the horizontal momentum equations are then stepped @@ -838,8 +838,8 @@ \subsubsection{Surface pressure} -The surface pressure equation can be obtained by integrating continuity, ( -\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ +The surface pressure equation can be obtained by integrating continuity, +(\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$ \begin{equation*} \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} @@ -864,7 +864,7 @@ where we have incorporated a source term. Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential -(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can +(atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can be written \begin{equation} \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) @@ -872,16 +872,16 @@ \end{equation} where $b_{s}$ is the buoyancy at the surface. -In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref +In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free surface' and `rigid lid' approaches are available. \subsubsection{Non-hydrostatic pressure} -Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ -\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation -(\ref{incompressible}), we deduce that: +Taking the horizontal divergence of (\ref{eq:mom-h}) and adding +$\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation +(\ref{eq:continuity}), we deduce that: \begin{equation} \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ @@ -911,7 +911,7 @@ depending on the form chosen for the dissipative terms in the momentum equations - see below. -Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: +Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that: \begin{equation} \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} @@ -951,7 +951,7 @@ converges rapidly because $\phi _{nh}\ $is then only a small correction to the hydrostatic pressure field (see the discussion in Marshall et al, a,b). -The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman}) +The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh}) does not vanish at $r=R_{moving}$, and so refines the pressure there. \subsection{Forcing/dissipation} @@ -959,7 +959,7 @@ \subsubsection{Forcing} The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by -`physics packages' described in detail in chapter ??. +`physics packages' and forcing packages. These are described later on. \subsubsection{Dissipation} @@ -1007,7 +1007,7 @@ \subsection{Vector invariant form} For some purposes it is advantageous to write momentum advection in eq(\ref -{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: +{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: \begin{equation} \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} @@ -1025,10 +1025,10 @@ \subsection{Adjoint} -Tangent linear and adjoint counterparts of the forward model and described +Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1147,15 +1147,15 @@ The final form of the HPE's in p coordinates is then: \begin{eqnarray} \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} -_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ +_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ \partial p} &=&0 \\ \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ -\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} +\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1171,10 +1171,11 @@ \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} \\ \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} -_{h}+\frac{\partial w}{\partial z} &=&0 \\ -\rho &=&\rho (\theta ,S,p) \\ -\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ -\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} +_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\ +\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\ +\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\ +\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt} +\label{eq:non-boussinesq} \end{eqnarray} These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline @@ -1193,8 +1194,7 @@ \end{equation} Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the -reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref -{eq-zns-cont} gives: +reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: \begin{equation} \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} @@ -1371,7 +1371,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.8 2001/10/25 15:24:01 cnh Exp $ % $Name: $ \section{Appendix:OPERATORS}