--- manual/s_overview/text/manual.tex 2001/10/11 19:36:56 1.4 +++ manual/s_overview/text/manual.tex 2001/10/24 15:21:27 1.6 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -32,11 +32,9 @@ %tci%\tableofcontents -\part{MIT GCM basics} - % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Introduction} @@ -96,9 +94,8 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -\pagebreak -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -289,7 +286,7 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -604,9 +601,9 @@ \left. \begin{tabular}{l} $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ -$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $ +$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ \\ -$-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ +$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ \\ $+\mathcal{F}_{u}$ \end{tabular} @@ -624,9 +621,9 @@ \left. \begin{tabular}{l} $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ -$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} +$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} $ \\ -$-\left\{ -2\Omega u\sin lat\right\} $ \\ +$-\left\{ -2\Omega u\sin \varphi \right\} $ \\ $+\mathcal{F}_{v}$ \end{tabular} \ \right\} \left\{ @@ -645,7 +642,7 @@ \begin{tabular}{l} $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ -${+}\underline{{2\Omega u\cos lat}}$ \\ +${+}\underline{{2\Omega u\cos \varphi}}$ \\ $\underline{\underline{\mathcal{F}_{\dot{r}}}}$ \end{tabular} \ \right\} \left\{ @@ -659,7 +656,7 @@ \end{equation} \qquad \qquad \qquad \qquad \qquad -In the above `${r}$' is the distance from the center of the earth and `$lat$ +In the above `${r}$' is the distance from the center of the earth and `$\varphi$ ' is latitude. Grad and div operators in spherical coordinates are defined in appendix @@ -697,7 +694,7 @@ In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos -\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic +\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field: only the terms underlined twice in Eqs. ( \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero and, simultaneously, the shallow atmosphere approximation is relaxed. In @@ -706,7 +703,7 @@ vertical momentum equation (\ref{eq:mom-w}) becomes: \begin{equation*} -\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat +\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi \end{equation*} making a small correction to the hydrostatic pressure. @@ -792,7 +789,7 @@ %%CNHend There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of -course, some complication that goes with the inclusion of $\cos \phi \ $ +course, some complication that goes with the inclusion of $\cos \varphi \ $ Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible increase in computation. In \textbf{NH}, in contrast, one additional elliptic equation - a three-dimensional one - must @@ -1024,7 +1021,7 @@ Tangent linear and adjoint counterparts of the forward model and described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1048,7 +1045,7 @@ where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total -derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is +derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal energy $ @@ -1151,7 +1148,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1367,7 +1364,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.4 2001/10/11 19:36:56 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $ % $Name: $ \section{Appendix:OPERATORS} @@ -1380,11 +1377,11 @@ and vertical direction respectively, are given by (see Fig.2) : \begin{equation*} -u=r\cos \phi \frac{D\lambda }{Dt} +u=r\cos \varphi \frac{D\lambda }{Dt} \end{equation*} \begin{equation*} -v=r\frac{D\phi }{Dt}\qquad +v=r\frac{D\varphi }{Dt}\qquad \end{equation*} $\qquad \qquad \qquad \qquad $ @@ -1392,7 +1389,7 @@ \dot{r}=\frac{Dr}{Dt} \end{equation*} -Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial +Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial distance of the particle from the center of the earth, $\Omega $ is the angular speed of rotation of the Earth and $D/Dt$ is the total derivative. @@ -1400,14 +1397,14 @@ spherical coordinates: \begin{equation*} -\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda } -,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r} +\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } +,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} \right) \end{equation*} \begin{equation*} -\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial -\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} +\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial +\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} \end{equation*}