--- manual/s_overview/text/manual.tex 2006/04/08 01:50:49 1.25 +++ manual/s_overview/text/manual.tex 2016/05/11 18:45:43 1.30 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.30 2016/05/11 18:45:43 jmc Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,9 +34,6 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - This document provides the reader with the information necessary to carry out numerical experiments using MITgcm. It gives a comprehensive description of the continuous equations on which the model is based, the @@ -61,14 +58,14 @@ models - see fig \ref{fig:onemodel} %% CNHbegin -\input{part1/one_model_figure} +\input{s_overview/text/one_model_figure} %% CNHend \item it has a non-hydrostatic capability and so can be used to study both small-scale and large scale processes - see fig \ref{fig:all-scales} %% CNHbegin -\input{part1/all_scales_figure} +\input{s_overview/text/all_scales_figure} %% CNHend \item finite volume techniques are employed yielding an intuitive @@ -76,7 +73,7 @@ orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} %% CNHbegin -\input{part1/fvol_figure} +\input{s_overview/text/fvol_figure} %% CNHend \item tangent linear and adjoint counterparts are automatically maintained @@ -87,8 +84,10 @@ computational platforms. \end{itemize} + Key publications reporting on and charting the development of the model are -\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}: +\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04} +(an overview on the model formulation can also be found in \cite{adcroft:04c}): \begin{verbatim} Hill, C. and J. Marshall, (1995) @@ -137,9 +136,6 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - \section{Illustrations of the model in action} MITgcm has been designed and used to model a wide range of phenomena, @@ -175,7 +171,7 @@ there are no mountains or land-sea contrast. %% CNHbegin -\input{part1/cubic_eddies_figure} +\input{s_overview/text/cubic_eddies_figure} %% CNHend As described in Adcroft (2001), a `cubed sphere' is used to discretize the @@ -191,7 +187,7 @@ latitude-longitude grid. Both grids are supported within the model. %% CNHbegin -\input{part1/hs_zave_u_figure} +\input{s_overview/text/hs_zave_u_figure} %% CNHend \subsection{Ocean gyres} @@ -222,7 +218,7 @@ is also clearly visible. %% CNHbegin -\input{part1/atl6_figure} +\input{s_overview/text/atl6_figure} %% CNHend @@ -244,7 +240,7 @@ circulation of the global ocean in Sverdrups. %%CNHbegin -\input{part1/global_circ_figure} +\input{s_overview/text/global_circ_figure} %%CNHend \subsection{Convection and mixing over topography} @@ -267,7 +263,7 @@ instability of the along-slope current. %%CNHbegin -\input{part1/convect_and_topo} +\input{s_overview/text/convect_and_topo} %%CNHend \subsection{Boundary forced internal waves} @@ -289,7 +285,7 @@ nonhydrostatic dynamics. %%CNHbegin -\input{part1/boundary_forced_waves} +\input{s_overview/text/boundary_forced_waves} %%CNHend \subsection{Parameter sensitivity using the adjoint of MITgcm} @@ -312,7 +308,7 @@ yields sensitivities to all other model parameters. %%CNHbegin -\input{part1/adj_hf_ocean_figure} +\input{s_overview/text/adj_hf_ocean_figure} %%CNHend \subsection{Global state estimation of the ocean} @@ -333,7 +329,7 @@ 1992-1997. %% CNHbegin -\input{part1/assim_figure} +\input{s_overview/text/assim_figure} %% CNHend \subsection{Ocean biogeochemical cycles} @@ -353,7 +349,7 @@ shown). %%CNHbegin -\input{part1/biogeo_figure} +\input{s_overview/text/biogeo_figure} %%CNHend \subsection{Simulations of laboratory experiments} @@ -371,12 +367,9 @@ stratification of the ACC. %%CNHbegin -\input{part1/lab_figure} +\input{s_overview/text/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - \section{Continuous equations in `r' coordinates} \begin{rawhtml} @@ -394,7 +387,7 @@ \ref{fig:isomorphic-equations}). %%CNHbegin -\input{part1/zandpcoord_figure.tex} +\input{s_overview/text/zandpcoord_figure.tex} %%CNHend The state of the fluid at any time is characterized by the distribution of @@ -408,7 +401,7 @@ see figure \ref{fig:zandp-vert-coord}. %%CNHbegin -\input{part1/vertcoord_figure.tex} +\input{s_overview/text/vertcoord_figure.tex} %%CNHend \begin{equation} @@ -659,6 +652,7 @@ \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms} +\label{sec:all_hydrostatic_forms} \begin{rawhtml} \end{rawhtml} @@ -767,7 +761,7 @@ OPERATORS. %%CNHbegin -\input{part1/sphere_coord_figure.tex} +\input{s_overview/text/sphere_coord_figure.tex} %%CNHend \subsubsection{Shallow atmosphere approximation} @@ -888,7 +882,7 @@ stepping forward the vertical momentum equation. %%CNHbegin -\input{part1/solution_strategy_figure.tex} +\input{s_overview/text/solution_strategy_figure.tex} %%CNHend There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of @@ -1077,7 +1071,7 @@ The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the diffusion tensor can be -non-diagonal and have varying coefficients. $\qquad $ +non-diagonal and have varying coefficients. \begin{equation} D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla _{h}^{4}(T,S) \label{eq:diffusion} @@ -1126,9 +1120,6 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - \section{Appendix ATMOSPHERE} \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure @@ -1148,14 +1139,14 @@ c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} \end{eqnarray} where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure -surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot -\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total -derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is -the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp -}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref -{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ -e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ -p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. +surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t} ++\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ +is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, +$\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume, +$\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate. +Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal +energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass +and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. It is convenient to cast the heat equation in terms of potential temperature $\theta $ so that it looks more like a generic conservation law. @@ -1255,9 +1246,6 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - \section{Appendix OCEAN} \subsection{Equations of motion for the ocean} @@ -1472,9 +1460,6 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.25 2006/04/08 01:50:49 edhill Exp $ -% $Name: $ - \section{Appendix:OPERATORS} \subsection{Coordinate systems} @@ -1489,9 +1474,8 @@ \end{equation*} \begin{equation*} -v=r\frac{D\varphi }{Dt}\qquad +v=r\frac{D\varphi }{Dt} \end{equation*} -$\qquad \qquad \qquad \qquad $ \begin{equation*} \dot{r}=\frac{Dr}{Dt} @@ -1501,7 +1485,7 @@ distance of the particle from the center of the earth, $\Omega $ is the angular speed of rotation of the Earth and $D/Dt$ is the total derivative. -The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in +The `grad' ($\nabla $) and `div' ($\nabla\cdot$) operators are defined by, in spherical coordinates: \begin{equation*} @@ -1511,7 +1495,7 @@ \end{equation*} \begin{equation*} -\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial +\nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} \end{equation*}