--- manual/s_overview/text/manual.tex 2001/10/10 16:48:45 1.3
+++ manual/s_overview/text/manual.tex 2001/10/24 15:21:27 1.6
@@ -1,63 +1,40 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
-%\usepackage{oldgerm}
-% I commented the following because it introduced excessive white space
-%\usepackage{palatcm} % better PDF
-% page headers and footers
-%\pagestyle{fancy}
-% referencing
-%% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}
-%% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}
-%% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}
-%% \newcommand{\reftabno}[1]{\ref{tab:#1}}
-%% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}
-%% \newcommand{\reffigno}[1]{\ref{fig:#1}}
-% stuff for psfrag
-%% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}
-%% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}
-% This allows numbering of subsubsections
-% This changes the the chapter title
-%\renewcommand{\chaptername}{Section}
-
-
-%%%% \documentclass[12pt]{book}
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%%%% \usepackage{amsmath}
-%%%% \usepackage{html}
-%%%% \usepackage{epsfig}
-%%%% \usepackage{graphics,subfigure}
-%%%% \usepackage{array}
-%%%% \usepackage{multirow}
-%%%% \usepackage{fancyhdr}
-%%%% \usepackage{psfrag}
-
-%%%% %TCIDATA{OutputFilter=Latex.dll}
-%%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
-%%%% %TCIDATA{}
-%%%% %TCIDATA{Language=American English}
-
-%%%% \fancyhead{}
-%%%% \fancyhead[LO]{\slshape \rightmark}
-%%%% \fancyhead[RE]{\slshape \leftmark}
-%%%% \fancyhead[RO,LE]{\thepage}
-%%%% \fancyfoot[CO,CE]{\today}
-%%%% \fancyfoot[RO,LE]{ }
-%%%% \renewcommand{\headrulewidth}{0.4pt}
-%%%% \renewcommand{\footrulewidth}{0.4pt}
-%%%% \setcounter{secnumdepth}{3}
-%%%% \input{tcilatex}
-%%%%
-%%%% \begin{document}
-%%%%
-%%%% \tableofcontents
-%%%%
-%%%% \pagebreak
-%%%% \part{MIT GCM basics}
+%tci%\documentclass[12pt]{book}
+%tci%\usepackage{amsmath}
+%tci%\usepackage{html}
+%tci%\usepackage{epsfig}
+%tci%\usepackage{graphics,subfigure}
+%tci%\usepackage{array}
+%tci%\usepackage{multirow}
+%tci%\usepackage{fancyhdr}
+%tci%\usepackage{psfrag}
+
+%tci%%TCIDATA{OutputFilter=Latex.dll}
+%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
+%tci%%TCIDATA{}
+%tci%%TCIDATA{Language=American English}
+
+%tci%\fancyhead{}
+%tci%\fancyhead[LO]{\slshape \rightmark}
+%tci%\fancyhead[RE]{\slshape \leftmark}
+%tci%\fancyhead[RO,LE]{\thepage}
+%tci%\fancyfoot[CO,CE]{\today}
+%tci%\fancyfoot[RO,LE]{ }
+%tci%\renewcommand{\headrulewidth}{0.4pt}
+%tci%\renewcommand{\footrulewidth}{0.4pt}
+%tci%\setcounter{secnumdepth}{3}
+%tci%\input{tcilatex}
+
+%tci%\begin{document}
+
+%tci%\tableofcontents
+
% Section: Overview
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Introduction}
@@ -77,7 +54,7 @@
\begin{itemize}
\item it can be used to study both atmospheric and oceanic phenomena; one
hydrodynamical kernel is used to drive forward both atmospheric and oceanic
-models - see fig%
+models - see fig
\marginpar{
Fig.1 One model}\ref{fig:onemodel}
@@ -86,7 +63,7 @@
%% CNHend
\item it has a non-hydrostatic capability and so can be used to study both
-small-scale and large scale processes - see fig %
+small-scale and large scale processes - see fig
\marginpar{
Fig.2 All scales}\ref{fig:all-scales}
@@ -96,7 +73,7 @@
\item finite volume techniques are employed yielding an intuitive
discretization and support for the treatment of irregular geometries using
-orthogonal curvilinear grids and shaved cells - see fig %
+orthogonal curvilinear grids and shaved cells - see fig
\marginpar{
Fig.3 Finite volumes}\ref{fig:finite-volumes}
@@ -117,9 +94,8 @@
We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.
-\pagebreak
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Illustrations of the model in action}
@@ -257,7 +233,7 @@
As one example of application of the MITgcm adjoint, Fig.E4 maps the
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
-of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $%
+of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is
sensitive to heat fluxes over the Labrador Sea, one of the important sources
of deep water for the thermohaline circulations. This calculation also
@@ -310,14 +286,14 @@
\input{part1/lab_figure}
%%CNHend
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Continuous equations in `r' coordinates}
To render atmosphere and ocean models from one dynamical core we exploit
`isomorphisms' between equation sets that govern the evolution of the
-respective fluids - see fig.4%
+respective fluids - see fig.4
\marginpar{
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
and encoded. The model variables have different interpretations depending on
@@ -335,7 +311,7 @@
depend on $\theta $, $S$, and $p$. The equations that govern the evolution
of these fields, obtained by applying the laws of classical mechanics and
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
-a generic vertical coordinate, $r$, see fig.5%
+a generic vertical coordinate, $r$, see fig.5
\marginpar{
Fig.5 The vertical coordinate of model}:
@@ -344,19 +320,19 @@
%%CNHend
\begin{equation*}
-\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
-\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%
+\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
+\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
\text{ horizontal mtm}
\end{equation*}
\begin{equation*}
-\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
+\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
vertical mtm}
\end{equation*}
\begin{equation}
-\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
+\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
\partial r}=0\text{ continuity} \label{eq:continuous}
\end{equation}
@@ -384,10 +360,10 @@
\end{equation*}
\begin{equation*}
-\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
+\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
\text{ is the `grad' operator}
\end{equation*}
-with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
+with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
is a unit vector in the vertical
@@ -421,7 +397,7 @@
\end{equation*}
\begin{equation*}
-\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%
+\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
\mathbf{v}}
\end{equation*}
@@ -466,7 +442,7 @@
\begin{equation}
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
-\end{equation}%
+\end{equation}
where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
\subsection{Atmosphere}
@@ -503,10 +479,10 @@
\begin{equation*}
T\text{ is absolute temperature}
-\end{equation*}%
+\end{equation*}
\begin{equation*}
p\text{ is the pressure}
-\end{equation*}%
+\end{equation*}
\begin{eqnarray*}
&&z\text{ is the height of the pressure surface} \\
&&g\text{ is the acceleration due to gravity}
@@ -516,7 +492,7 @@
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
\begin{equation}
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
-\end{equation}%
+\end{equation}
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
constant and $c_{p}$ the specific heat of air at constant pressure.
@@ -566,7 +542,7 @@
The surface of the ocean is given by: $R_{moving}=\eta $
-The position of the resting free surface of the ocean is given by $%
+The position of the resting free surface of the ocean is given by $
R_{o}=Z_{o}=0$.
Boundary conditions are:
@@ -574,7 +550,7 @@
\begin{eqnarray}
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
\\
-w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %
+w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
\label{eq:moving-bc-ocean}}
\end{eqnarray}
where $\eta $ is the elevation of the free surface.
@@ -591,7 +567,7 @@
\begin{equation}
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
\label{eq:phi-split}
-\end{equation}%
+\end{equation}
and write eq(\ref{incompressible}a,b) in the form:
\begin{equation}
@@ -605,19 +581,19 @@
\end{equation}
\begin{equation}
-\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
+\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
\partial r}=G_{\dot{r}} \label{eq:mom-w}
\end{equation}
Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
-The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%
+The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
-terms in the momentum equations. In spherical coordinates they take the form%
-\footnote{%
+terms in the momentum equations. In spherical coordinates they take the form
+\footnote{
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
-in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%
+in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in
-the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%
+the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
discussion:
@@ -625,19 +601,19 @@
\left.
\begin{tabular}{l}
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
-$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
+$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
\\
-$-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
+$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
\\
-$+\mathcal{F}_{u}$%
-\end{tabular}%
+$+\mathcal{F}_{u}$
+\end{tabular}
\ \right\} \left\{
\begin{tabular}{l}
\textit{advection} \\
\textit{metric} \\
\textit{Coriolis} \\
-\textit{\ Forcing/Dissipation}%
-\end{tabular}%
+\textit{\ Forcing/Dissipation}
+\end{tabular}
\ \right. \qquad \label{eq:gu-speherical}
\end{equation}
@@ -645,20 +621,20 @@
\left.
\begin{tabular}{l}
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
-$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
+$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
$ \\
-$-\left\{ -2\Omega u\sin lat\right\} $ \\
-$+\mathcal{F}_{v}$%
-\end{tabular}%
+$-\left\{ -2\Omega u\sin \varphi \right\} $ \\
+$+\mathcal{F}_{v}$
+\end{tabular}
\ \right\} \left\{
\begin{tabular}{l}
\textit{advection} \\
\textit{metric} \\
\textit{Coriolis} \\
-\textit{\ Forcing/Dissipation}%
-\end{tabular}%
+\textit{\ Forcing/Dissipation}
+\end{tabular}
\ \right. \qquad \label{eq:gv-spherical}
-\end{equation}%
+\end{equation}
\qquad \qquad \qquad \qquad \qquad
\begin{equation}
@@ -666,25 +642,25 @@
\begin{tabular}{l}
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
-${+}\underline{{2\Omega u\cos lat}}$ \\
-$\underline{\underline{\mathcal{F}_{\dot{r}}}}$%
-\end{tabular}%
+${+}\underline{{2\Omega u\cos \varphi}}$ \\
+$\underline{\underline{\mathcal{F}_{\dot{r}}}}$
+\end{tabular}
\ \right\} \left\{
\begin{tabular}{l}
\textit{advection} \\
\textit{metric} \\
\textit{Coriolis} \\
-\textit{\ Forcing/Dissipation}%
-\end{tabular}%
+\textit{\ Forcing/Dissipation}
+\end{tabular}
\ \right. \label{eq:gw-spherical}
-\end{equation}%
+\end{equation}
\qquad \qquad \qquad \qquad \qquad
-In the above `${r}$' is the distance from the center of the earth and `$lat$%
+In the above `${r}$' is the distance from the center of the earth and `$\varphi$
' is latitude.
Grad and div operators in spherical coordinates are defined in appendix
-OPERATORS.%
+OPERATORS.
\marginpar{
Fig.6 Spherical polar coordinate system.}
@@ -700,7 +676,7 @@
Coriolis force is treated approximately and the shallow atmosphere
approximation is made.\ The MITgcm need not make the `traditional
approximation'. To be able to support consistent non-hydrostatic forms the
-shallow atmosphere approximation can be relaxed - when dividing through by $%
+shallow atmosphere approximation can be relaxed - when dividing through by $
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
the radius of the earth.
@@ -713,13 +689,13 @@
are neglected and `${r}$' is replaced by `$a$', the mean radius of the
earth. Once the pressure is found at one level - e.g. by inverting a 2-d
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
-computed at all other levels by integration of the hydrostatic relation, eq(%
+computed at all other levels by integration of the hydrostatic relation, eq(
\ref{eq:hydrostatic}).
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
-\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
-contribution to the pressure field: only the terms underlined twice in Eqs. (%
+\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
+contribution to the pressure field: only the terms underlined twice in Eqs. (
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
and, simultaneously, the shallow atmosphere approximation is relaxed. In
\textbf{QH}\ \textit{all} the metric terms are retained and the full
@@ -727,7 +703,7 @@
vertical momentum equation (\ref{eq:mom-w}) becomes:
\begin{equation*}
-\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
+\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
\end{equation*}
making a small correction to the hydrostatic pressure.
@@ -743,7 +719,7 @@
\paragraph{Non-hydrostatic Ocean}
-In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%
+In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
three dimensional elliptic equation must be solved subject to Neumann
boundary conditions (see below). It is important to note that use of the
@@ -756,13 +732,13 @@
\paragraph{Quasi-nonhydrostatic Atmosphere}
-In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
+In the non-hydrostatic version of our atmospheric model we approximate $\dot{
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
(but only here) by:
\begin{equation}
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
-\end{equation}%
+\end{equation}
where $p_{hy}$ is the hydrostatic pressure.
\subsubsection{Summary of equation sets supported by model}
@@ -790,14 +766,14 @@
\subparagraph{Non-hydrostatic}
-Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
-coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%
+Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
+coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
{eq:ocean-salt}).
\subsection{Solution strategy}
-The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
-NH} models is summarized in Fig.7.%
+The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
+NH} models is summarized in Fig.7.
\marginpar{
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
first solved to find the surface pressure and the hydrostatic pressure at
@@ -813,7 +789,7 @@
%%CNHend
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
-course, some complication that goes with the inclusion of $\cos \phi \ $%
+course, some complication that goes with the inclusion of $\cos \varphi \ $
Coriolis terms and the relaxation of the shallow atmosphere approximation.
But this leads to negligible increase in computation. In \textbf{NH}, in
contrast, one additional elliptic equation - a three-dimensional one - must
@@ -837,7 +813,7 @@
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
\begin{equation*}
-\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%
+\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
\end{equation*}
and so
@@ -855,11 +831,11 @@
\subsubsection{Surface pressure}
-The surface pressure equation can be obtained by integrating continuity, (%
+The surface pressure equation can be obtained by integrating continuity, (
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
\begin{equation*}
-\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
+\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
}_{h}+\partial _{r}\dot{r}\right) dr=0
\end{equation*}
@@ -867,17 +843,17 @@
\begin{equation*}
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
-+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
++\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
_{h}dr=0
\end{equation*}
-where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
+where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
r $. The above can be rearranged to yield, using Leibnitz's theorem:
\begin{equation}
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
\label{eq:free-surface}
-\end{equation}%
+\end{equation}
where we have incorporated a source term.
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
@@ -886,23 +862,23 @@
\begin{equation}
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
\label{eq:phi-surf}
-\end{equation}%
+\end{equation}
where $b_{s}$ is the buoyancy at the surface.
-In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%
+In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
surface' and `rigid lid' approaches are available.
\subsubsection{Non-hydrostatic pressure}
-Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
+Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
(\ref{incompressible}), we deduce that:
\begin{equation}
-\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
-\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
+\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
+\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
\vec{\mathbf{F}} \label{eq:3d-invert}
\end{equation}
@@ -922,7 +898,7 @@
\end{equation}
where $\widehat{n}$ is a vector of unit length normal to the boundary. The
kinematic condition (\ref{nonormalflow}) is also applied to the vertical
-velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
+velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
tangential component of velocity, $v_{T}$, at all solid boundaries,
depending on the form chosen for the dissipative terms in the momentum
@@ -939,25 +915,25 @@
\begin{equation*}
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
_{s}+\mathbf{\nabla }\phi _{hyd}\right)
-\end{equation*}%
+\end{equation*}
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
exploit classical 3D potential theory and, by introducing an appropriately
chosen $\delta $-function sheet of `source-charge', replace the
inhomogeneous boundary condition on pressure by a homogeneous one. The
-source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $%
-\vec{\mathbf{F}}.$ By simultaneously setting $%
+source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
+\vec{\mathbf{F}}.$ By simultaneously setting $
\begin{array}{l}
-\widehat{n}.\vec{\mathbf{F}}%
-\end{array}%
+\widehat{n}.\vec{\mathbf{F}}
+\end{array}
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
self-consistent but simpler homogenized Elliptic problem is obtained:
\begin{equation*}
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
-\end{equation*}%
+\end{equation*}
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
-that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%
+that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
{eq:inhom-neumann-nh}) the modified boundary condition becomes:
\begin{equation}
@@ -986,7 +962,7 @@
biharmonic frictions are commonly used:
\begin{equation}
-D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
+D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
\end{equation}
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
@@ -997,12 +973,12 @@
The mixing terms for the temperature and salinity equations have a similar
form to that of momentum except that the diffusion tensor can be
-non-diagonal and have varying coefficients. $\qquad $%
+non-diagonal and have varying coefficients. $\qquad $
\begin{equation}
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
_{h}^{4}(T,S) \label{eq:diffusion}
\end{equation}
-where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
+where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
@@ -1013,7 +989,7 @@
\begin{array}{ccc}
K_{h} & 0 & 0 \\
0 & K_{h} & 0 \\
-0 & 0 & K_{v}%
+0 & 0 & K_{v}
\end{array}
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
\end{equation}
@@ -1023,19 +999,19 @@
\subsection{Vector invariant form}
-For some purposes it is advantageous to write momentum advection in eq(\ref%
+For some purposes it is advantageous to write momentum advection in eq(\ref
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
\begin{equation}
-\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
-+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %
+\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
++\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
\label{eq:vi-identity}
-\end{equation}%
+\end{equation}
This permits alternative numerical treatments of the non-linear terms based
on their representation as a vorticity flux. Because gradients of coordinate
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
-representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%
+representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
about the geometry is contained in the areas and lengths of the volumes used
to discretize the model.
@@ -1045,7 +1021,7 @@
Tangent linear and adjoint counterparts of the forward model and described
in Chapter 5.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Appendix ATMOSPHERE}
@@ -1057,23 +1033,23 @@
The hydrostatic primitive equations (HPEs) in p-coordinates are:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
\label{eq:atmos-mom} \\
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
-\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
+\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
\partial p} &=&0 \label{eq:atmos-cont} \\
p\alpha &=&RT \label{eq:atmos-eos} \\
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
-\end{eqnarray}%
+\end{eqnarray}
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
-derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
-the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
-}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%
-{eq:atmos-heat}) is the first law of thermodynamics where internal energy $%
-e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
+derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
+the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
+}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
+{eq:atmos-heat}) is the first law of thermodynamics where internal energy $
+e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
It is convenient to cast the heat equation in terms of potential temperature
@@ -1081,30 +1057,30 @@
Differentiating (\ref{eq:atmos-eos}) we get:
\begin{equation*}
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
-\end{equation*}%
-which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%
+\end{equation*}
+which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
c_{p}=c_{v}+R$, gives:
\begin{equation}
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
\label{eq-p-heat-interim}
-\end{equation}%
+\end{equation}
Potential temperature is defined:
\begin{equation}
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
-\end{equation}%
+\end{equation}
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
we will make use of the Exner function $\Pi (p)$ which defined by:
\begin{equation}
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
-\end{equation}%
+\end{equation}
The following relations will be useful and are easily expressed in terms of
the Exner function:
\begin{equation*}
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
-}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
-\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
+}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
+\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
\frac{Dp}{Dt}
-\end{equation*}%
+\end{equation*}
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
The heat equation is obtained by noting that
@@ -1119,7 +1095,7 @@
\end{equation}
which is in conservative form.
-For convenience in the model we prefer to step forward (\ref%
+For convenience in the model we prefer to step forward (\ref
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
\subsubsection{Boundary conditions}
@@ -1163,16 +1139,16 @@
The final form of the HPE's in p coordinates is then:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
-\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
+\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
\partial p} &=&0 \\
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
\end{eqnarray}
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Appendix OCEAN}
@@ -1183,21 +1159,21 @@
HPE's for the ocean written in z-coordinates are obtained. The
non-Boussinesq equations for oceanic motion are:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
&=&\epsilon _{nh}\mathcal{F}_{w} \\
-\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
+\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
_{h}+\frac{\partial w}{\partial z} &=&0 \\
\rho &=&\rho (\theta ,S,p) \\
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
-\end{eqnarray}%
+\end{eqnarray}
These equations permit acoustics modes, inertia-gravity waves,
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
mode. As written, they cannot be integrated forward consistently - if we
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
-consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%
+consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
therefore necessary to manipulate the system as follows. Differentiating the
EOS (equation of state) gives:
@@ -1210,10 +1186,10 @@
\end{equation}
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
-reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%
+reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
{eq-zns-cont} gives:
\begin{equation}
-\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
+\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
\end{equation}
where we have used an approximation sign to indicate that we have assumed
@@ -1221,12 +1197,12 @@
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
can be explicitly integrated forward:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
\label{eq-cns-hmom} \\
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
-\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
+\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
@@ -1240,32 +1216,32 @@
`Boussinesq assumption'. The only term that then retains the full variation
in $\rho $ is the gravitational acceleration:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
\label{eq-zcb-hmom} \\
-\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
+\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
\label{eq-zcb-hydro} \\
-\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
+\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
\end{eqnarray}
These equations still retain acoustic modes. But, because the
-``compressible'' terms are linearized, the pressure equation \ref%
+``compressible'' terms are linearized, the pressure equation \ref
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
term appears as a Helmholtz term in the non-hydrostatic pressure equation).
These are the \emph{truly} compressible Boussinesq equations. Note that the
EOS must have the same pressure dependency as the linearized pressure term,
-ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
+ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
c_{s}^{2}}$, for consistency.
\subsubsection{`Anelastic' z-coordinate equations}
The anelastic approximation filters the acoustic mode by removing the
-time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
-). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
+time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
+). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
continuity and EOS. A better solution is to change the dependency on
pressure in the EOS by splitting the pressure into a reference function of
@@ -1276,29 +1252,29 @@
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
differentiating the EOS, the continuity equation then becomes:
\begin{equation*}
-\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
-Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
+\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
+Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
\frac{\partial w}{\partial z}=0
\end{equation*}
If the time- and space-scales of the motions of interest are longer than
-those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
+those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
-$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
+$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
anelastic continuity equation:
\begin{equation}
-\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
\end{equation}
A slightly different route leads to the quasi-Boussinesq continuity equation
-where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
-\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
+where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
+\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
\begin{equation}
-\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
\end{equation}
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
@@ -1307,18 +1283,18 @@
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
\end{equation}
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
-and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
+and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
then:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
\label{eq-zab-hmom} \\
-\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
+\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
\label{eq-zab-hydro} \\
-\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
@@ -1331,10 +1307,10 @@
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
yield the ``truly'' incompressible Boussinesq equations:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
\label{eq-ztb-hmom} \\
-\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
+\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
\label{eq-ztb-hydro} \\
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
@@ -1353,20 +1329,20 @@
density thus:
\begin{equation*}
\rho =\rho _{o}+\rho ^{\prime }
-\end{equation*}%
+\end{equation*}
We then assert that variations with depth of $\rho _{o}$ are unimportant
while the compressible effects in $\rho ^{\prime }$ are:
\begin{equation*}
\rho _{o}=\rho _{c}
-\end{equation*}%
+\end{equation*}
\begin{equation*}
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
-\end{equation*}%
+\end{equation*}
This then yields what we can call the semi-compressible Boussinesq
equations:
\begin{eqnarray}
-\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
-_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
+\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
+_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
\mathcal{F}}} \label{eq:ocean-mom} \\
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
@@ -1377,7 +1353,7 @@
\\
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
-\end{eqnarray}%
+\end{eqnarray}
Note that the hydrostatic pressure of the resting fluid, including that
associated with $\rho _{c}$, is subtracted out since it has no effect on the
dynamics.
@@ -1388,7 +1364,7 @@
_{nh}=0$ form of these equations that are used throughout the ocean modeling
community and referred to as the primitive equations (HPE).
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.6 2001/10/24 15:21:27 cnh Exp $
% $Name: $
\section{Appendix:OPERATORS}
@@ -1401,11 +1377,11 @@
and vertical direction respectively, are given by (see Fig.2) :
\begin{equation*}
-u=r\cos \phi \frac{D\lambda }{Dt}
+u=r\cos \varphi \frac{D\lambda }{Dt}
\end{equation*}
\begin{equation*}
-v=r\frac{D\phi }{Dt}\qquad
+v=r\frac{D\varphi }{Dt}\qquad
\end{equation*}
$\qquad \qquad \qquad \qquad $
@@ -1413,7 +1389,7 @@
\dot{r}=\frac{Dr}{Dt}
\end{equation*}
-Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
+Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
distance of the particle from the center of the earth, $\Omega $ is the
angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
@@ -1421,15 +1397,15 @@
spherical coordinates:
\begin{equation*}
-\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
-,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
+\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
+,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
\right)
\end{equation*}
\begin{equation*}
-\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
-\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
+\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
+\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
\end{equation*}
-%%%% \end{document}
+%tci%\end{document}