--- manual/s_overview/text/manual.tex 2001/10/09 10:48:03 1.2 +++ manual/s_overview/text/manual.tex 2001/10/10 16:48:45 1.3 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ %\usepackage{oldgerm} % I commented the following because it introduced excessive white space @@ -57,7 +57,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Introduction} @@ -77,20 +77,32 @@ \begin{itemize} \item it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is used to drive forward both atmospheric and oceanic -models - see fig.1% +models - see fig% \marginpar{ Fig.1 One model}\ref{fig:onemodel} +%% CNHbegin +\input{part1/one_model_figure} +%% CNHend + \item it has a non-hydrostatic capability and so can be used to study both -small-scale and large scale processes - see fig.2% +small-scale and large scale processes - see fig % \marginpar{ Fig.2 All scales}\ref{fig:all-scales} +%% CNHbegin +\input{part1/all_scales_figure} +%% CNHend + \item finite volume techniques are employed yielding an intuitive discretization and support for the treatment of irregular geometries using -orthogonal curvilinear grids and shaved cells - see fig.3% +orthogonal curvilinear grids and shaved cells - see fig % \marginpar{ -Fig.3 Finite volumes}\ref{fig:Finite volumes} +Fig.3 Finite volumes}\ref{fig:finite-volumes} + +%% CNHbegin +\input{part1/fvol_figure} +%% CNHend \item tangent linear and adjoint counterparts are automatically maintained along with the forward model, permitting sensitivity and optimization @@ -107,7 +119,7 @@ give a feel for the wide range of problems that can be addressed using it. \pagebreak -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -128,7 +140,7 @@ A novel feature of MITgcm is its ability to simulate both atmospheric and oceanographic flows at both small and large scales. -Fig.E1a.\ref{fig:Held-Suarez} shows an instantaneous plot of the 500$mb$ +Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ temperature field obtained using the atmospheric isomorph of MITgcm run at 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an equatorial band (red). Fully developed @@ -139,6 +151,10 @@ in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast. +%% CNHbegin +\input{part1/cubic_eddies_figure} +%% CNHend + As described in Adcroft (2001), a `cubed sphere' is used to discretize the globe permitting a uniform gridding and obviated the need to fourier filter. The `vector-invariant' form of MITgcm supports any orthogonal curvilinear @@ -151,6 +167,10 @@ A regular spherical lat-lon grid can also be used. +%% CNHbegin +\input{part1/hs_zave_u_figure} +%% CNHend + \subsection{Ocean gyres} Baroclinic instability is a ubiquitous process in the ocean, as well as the @@ -171,6 +191,11 @@ warm water northward by the mean flow of the Gulf Stream is also clearly visible. +%% CNHbegin +\input{part1/ocean_gyres_figure} +%% CNHend + + \subsection{Global ocean circulation} Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ @@ -184,6 +209,10 @@ Fig.E2b shows the meridional overturning circulation of the global ocean in Sverdrups. +%%CNHbegin +\input{part1/global_circ_figure} +%%CNHend + \subsection{Convection and mixing over topography} Dense plumes generated by localized cooling on the continental shelf of the @@ -198,6 +227,10 @@ strong, and replaced by lateral entrainment due to the baroclinic instability of the along-slope current. +%%CNHbegin +\input{part1/convect_and_topo} +%%CNHend + \subsection{Boundary forced internal waves} The unique ability of MITgcm to treat non-hydrostatic dynamics in the @@ -212,6 +245,10 @@ using MITgcm's finite volume spatial discretization) where they break under nonhydrostatic dynamics. +%%CNHbegin +\input{part1/boundary_forced_waves} +%%CNHend + \subsection{Parameter sensitivity using the adjoint of MITgcm} Forward and tangent linear counterparts of MITgcm are supported using an @@ -226,6 +263,10 @@ of deep water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters. +%%CNHbegin +\input{part1/adj_hf_ocean_figure} +%%CNHend + \subsection{Global state estimation of the ocean} An important application of MITgcm is in state estimation of the global @@ -237,6 +278,10 @@ ocean obtained by bringing the model in to consistency with altimetric and in-situ observations over the period 1992-1997. +%% CNHbegin +\input{part1/globes_figure} +%% CNHend + \subsection{Ocean biogeochemical cycles} MITgcm is being used to study global biogeochemical cycles in the ocean. For @@ -246,8 +291,9 @@ flux of oxygen and its relation to density outcrops in the southern oceans from a single year of a global, interannually varying simulation. -Chris - get figure here: http://puddle.mit.edu/\symbol{126}% -mick/biogeochem.html +%%CNHbegin +\input{part1/biogeo_figure} +%%CNHend \subsection{Simulations of laboratory experiments} @@ -260,7 +306,11 @@ arrested by its instability in a process analogous to that whic sets the stratification of the ACC. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +%%CNHbegin +\input{part1/lab_figure} +%%CNHend + +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -275,6 +325,10 @@ vertical coordinate `$r$' is interpreted as pressure, $p$, if we are modeling the atmosphere and height, $z$, if we are modeling the ocean. +%%CNHbegin +\input{part1/zandpcoord_figure.tex} +%%CNHend + The state of the fluid at any time is characterized by the distribution of velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may @@ -285,6 +339,10 @@ \marginpar{ Fig.5 The vertical coordinate of model}: +%%CNHbegin +\input{part1/vertcoord_figure.tex} +%%CNHend + \begin{equation*} \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% @@ -630,6 +688,10 @@ \marginpar{ Fig.6 Spherical polar coordinate system.} +%%CNHbegin +\input{part1/sphere_coord_figure.tex} +%%CNHend + \subsubsection{Shallow atmosphere approximation} Most models are based on the `hydrostatic primitive equations' (HPE's) in @@ -746,6 +808,10 @@ stepping forward the horizontal momentum equations; $\dot{r}$ is found by stepping forward the vertical momentum equation. +%%CNHbegin +\input{part1/solution_strategy_figure.tex} +%%CNHend + There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of course, some complication that goes with the inclusion of $\cos \phi \ $% Coriolis terms and the relaxation of the shallow atmosphere approximation. @@ -979,7 +1045,7 @@ Tangent linear and adjoint counterparts of the forward model and described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1106,7 +1172,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1322,7 +1388,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.3 2001/10/10 16:48:45 cnh Exp $ % $Name: $ \section{Appendix:OPERATORS}