--- manual/s_overview/text/manual.tex 2004/03/23 15:29:39 1.18 +++ manual/s_overview/text/manual.tex 2004/10/17 04:15:13 1.22 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ This document provides the reader with the information necessary to @@ -49,7 +49,7 @@ \section{Introduction} \begin{rawhtml} - + \end{rawhtml} @@ -137,7 +137,7 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -155,7 +155,7 @@ \subsection{Global atmosphere: `Held-Suarez' benchmark} \begin{rawhtml} - + \end{rawhtml} @@ -196,10 +196,10 @@ \subsection{Ocean gyres} \begin{rawhtml} - + \end{rawhtml} \begin{rawhtml} - + \end{rawhtml} Baroclinic instability is a ubiquitous process in the ocean, as well as the @@ -228,7 +228,7 @@ \subsection{Global ocean circulation} \begin{rawhtml} - + \end{rawhtml} Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at @@ -249,7 +249,7 @@ \subsection{Convection and mixing over topography} \begin{rawhtml} - + \end{rawhtml} @@ -272,7 +272,7 @@ \subsection{Boundary forced internal waves} \begin{rawhtml} - + \end{rawhtml} The unique ability of MITgcm to treat non-hydrostatic dynamics in the @@ -294,7 +294,7 @@ \subsection{Parameter sensitivity using the adjoint of MITgcm} \begin{rawhtml} - + \end{rawhtml} Forward and tangent linear counterparts of MITgcm are supported using an @@ -317,7 +317,7 @@ \subsection{Global state estimation of the ocean} \begin{rawhtml} - + \end{rawhtml} @@ -338,7 +338,7 @@ \subsection{Ocean biogeochemical cycles} \begin{rawhtml} - + \end{rawhtml} MITgcm is being used to study global biogeochemical cycles in the ocean. For @@ -356,7 +356,7 @@ \subsection{Simulations of laboratory experiments} \begin{rawhtml} - + \end{rawhtml} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a @@ -372,12 +372,12 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} \begin{rawhtml} - + \end{rawhtml} To render atmosphere and ocean models from one dynamical core we exploit @@ -409,11 +409,11 @@ \input{part1/vertcoord_figure.tex} %%CNHend -\begin{equation*} +\begin{equation} \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} \text{ horizontal mtm} \label{eq:horizontal_mtm} -\end{equation*} +\end{equation} \begin{equation} \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ @@ -611,9 +611,11 @@ atmosphere)} \label{eq:moving-bc-atmos} \end{eqnarray} -Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) -yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ -coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). +Then the (hydrostatic form of) equations +(\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent +set of atmospheric equations which, for convenience, are written out +in $p$ coordinates in Appendix Atmosphere - see +eqs(\ref{eq:atmos-prime}). \subsection{Ocean} @@ -656,7 +658,7 @@ \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms} \begin{rawhtml} - + \end{rawhtml} @@ -666,7 +668,9 @@ \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) \label{eq:phi-split} \end{equation} -and write eq(\ref{eq:incompressible}) in the form: +%and write eq(\ref{eq:incompressible}) in the form: +% ^- this eq is missing (jmc) ; replaced with: +and write eq( \ref{eq:horizontal_mtm}) in the form: \begin{equation} \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi @@ -1096,8 +1100,9 @@ \subsection{Vector invariant form} -For some purposes it is advantageous to write momentum advection in eq(\ref -{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: +For some purposes it is advantageous to write momentum advection in +eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the +(so-called) `vector invariant' form: \begin{equation} \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} @@ -1118,7 +1123,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1208,6 +1213,7 @@ surface ($\phi $ is imposed and $\omega \neq 0$). \subsubsection{Splitting the geo-potential} +\label{sec:hpe-p-geo-potential-split} For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or ``standard'') profiles. For @@ -1237,7 +1243,8 @@ The final form of the HPE's in p coordinates is then: \begin{eqnarray} \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} -_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ +_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} +\label{eq:atmos-prime} \\ \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ \partial p} &=&0 \\ @@ -1245,7 +1252,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1283,8 +1290,9 @@ _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} \end{equation} -Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the -reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: +Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is +the reciprocal of the sound speed ($c_{s}$) squared. Substituting into +\ref{eq-zns-cont} gives: \begin{equation} \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} @@ -1461,7 +1469,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.22 2004/10/17 04:15:13 jmc Exp $ % $Name: $ \section{Appendix:OPERATORS}