--- manual/s_overview/text/manual.tex 2003/08/07 18:27:51 1.17 +++ manual/s_overview/text/manual.tex 2004/03/23 15:29:39 1.18 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ This document provides the reader with the information necessary to @@ -48,6 +48,10 @@ also presented. \section{Introduction} +\begin{rawhtml} + +\end{rawhtml} + MITgcm has a number of novel aspects: @@ -133,7 +137,7 @@ We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -150,6 +154,11 @@ described in detail in the documentation. \subsection{Global atmosphere: `Held-Suarez' benchmark} +\begin{rawhtml} + +\end{rawhtml} + + A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic flows at both small and large scales. @@ -186,6 +195,12 @@ %% CNHend \subsection{Ocean gyres} +\begin{rawhtml} + +\end{rawhtml} +\begin{rawhtml} + +\end{rawhtml} Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important role in modifying the @@ -212,6 +227,9 @@ \subsection{Global ocean circulation} +\begin{rawhtml} + +\end{rawhtml} Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at the surface of a 4$^{\circ }$ @@ -230,6 +248,10 @@ %%CNHend \subsection{Convection and mixing over topography} +\begin{rawhtml} + +\end{rawhtml} + Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when the deformation radius is smaller @@ -249,6 +271,9 @@ %%CNHend \subsection{Boundary forced internal waves} +\begin{rawhtml} + +\end{rawhtml} The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal tool to study internal wave @@ -268,6 +293,9 @@ %%CNHend \subsection{Parameter sensitivity using the adjoint of MITgcm} +\begin{rawhtml} + +\end{rawhtml} Forward and tangent linear counterparts of MITgcm are supported using an `automatic adjoint compiler'. These can be used in parameter sensitivity and @@ -288,6 +316,10 @@ %%CNHend \subsection{Global state estimation of the ocean} +\begin{rawhtml} + +\end{rawhtml} + An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined `cost function', which measures @@ -305,6 +337,9 @@ %% CNHend \subsection{Ocean biogeochemical cycles} +\begin{rawhtml} + +\end{rawhtml} MITgcm is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of interannual changes in meteorological @@ -320,6 +355,9 @@ %%CNHend \subsection{Simulations of laboratory experiments} +\begin{rawhtml} + +\end{rawhtml} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An @@ -334,10 +372,13 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} +\begin{rawhtml} + +\end{rawhtml} To render atmosphere and ocean models from one dynamical core we exploit `isomorphisms' between equation sets that govern the evolution of the @@ -614,6 +655,10 @@ \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms} +\begin{rawhtml} + +\end{rawhtml} + Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: @@ -1073,7 +1118,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1200,7 +1245,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1416,7 +1461,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.18 2004/03/23 15:29:39 afe Exp $ % $Name: $ \section{Appendix:OPERATORS}