--- manual/s_overview/text/manual.tex 2001/11/21 16:33:17 1.15 +++ manual/s_overview/text/manual.tex 2003/08/07 18:27:51 1.17 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,12 +34,10 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ -\section{Introduction} - -This documentation provides the reader with the information necessary to +This document provides the reader with the information necessary to carry out numerical experiments using MITgcm. It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms the model employs and a description of the associated @@ -49,6 +47,8 @@ both process and general circulation studies of the atmosphere and ocean are also presented. +\section{Introduction} + MITgcm has a number of novel aspects: \begin{itemize} @@ -83,10 +83,10 @@ computational platforms. \end{itemize} -Key publications reporting on and charting the development of the model are: +Key publications reporting on and charting the development of the model are +\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}: \begin{verbatim} - Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Computational Fluid Dynamics @@ -95,7 +95,7 @@ Elsevier Science B.V.: New York Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) -Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, +Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling J. Geophysical Res., 102(C3), 5733-5752. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) @@ -128,13 +128,12 @@ application to Atlantic heat transport variability J. Geophysical Res., 104(C12), 29,529-29,547. - \end{verbatim} We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -323,7 +322,7 @@ \subsection{Simulations of laboratory experiments} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a -laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An +laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water ($1m$ in diameter) is driven from its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of fluid which becomes baroclinically @@ -335,7 +334,7 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -347,8 +346,8 @@ and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean is being studied. Thus, for example, the vertical coordinate `$r$' is interpreted as pressure, $p$, if we are -modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) -and height, $z$, if we are modeling the ocean (right hand side of figure +modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations}) +and height, $z$, if we are modeling the ocean (left hand side of figure \ref{fig:isomorphic-equations}). %%CNHbegin @@ -472,12 +471,12 @@ at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): \begin{equation} -\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} +\dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} \label{eq:fixedbc} \end{equation} \begin{equation} -\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ +\dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \ (ocean surface,bottom of the atmosphere)} \label{eq:movingbc} \end{equation} @@ -1074,7 +1073,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1201,7 +1200,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1417,7 +1416,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.15 2001/11/21 16:33:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ % $Name: $ \section{Appendix:OPERATORS}