--- manual/s_overview/text/manual.tex 2001/11/21 14:13:17 1.14 +++ manual/s_overview/text/manual.tex 2004/03/23 16:47:04 1.19 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,12 +34,10 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ -\section{Introduction} - -This documentation provides the reader with the information necessary to +This document provides the reader with the information necessary to carry out numerical experiments using MITgcm. It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms the model employs and a description of the associated @@ -49,6 +47,12 @@ both process and general circulation studies of the atmosphere and ocean are also presented. +\section{Introduction} +\begin{rawhtml} + +\end{rawhtml} + + MITgcm has a number of novel aspects: \begin{itemize} @@ -83,10 +87,10 @@ computational platforms. \end{itemize} -Key publications reporting on and charting the development of the model are: +Key publications reporting on and charting the development of the model are +\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}: \begin{verbatim} - Hill, C. and J. Marshall, (1995) Application of a Parallel Navier-Stokes Model to Ocean Circulation in Parallel Computational Fluid Dynamics @@ -95,7 +99,7 @@ Elsevier Science B.V.: New York Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) -Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, +Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling J. Geophysical Res., 102(C3), 5733-5752. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) @@ -128,13 +132,12 @@ application to Atlantic heat transport variability J. Geophysical Res., 104(C12), 29,529-29,547. - \end{verbatim} We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -151,6 +154,11 @@ described in detail in the documentation. \subsection{Global atmosphere: `Held-Suarez' benchmark} +\begin{rawhtml} + +\end{rawhtml} + + A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic flows at both small and large scales. @@ -187,6 +195,12 @@ %% CNHend \subsection{Ocean gyres} +\begin{rawhtml} + +\end{rawhtml} +\begin{rawhtml} + +\end{rawhtml} Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important role in modifying the @@ -213,6 +227,9 @@ \subsection{Global ocean circulation} +\begin{rawhtml} + +\end{rawhtml} Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at the surface of a 4$^{\circ }$ @@ -231,6 +248,10 @@ %%CNHend \subsection{Convection and mixing over topography} +\begin{rawhtml} + +\end{rawhtml} + Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when the deformation radius is smaller @@ -250,6 +271,9 @@ %%CNHend \subsection{Boundary forced internal waves} +\begin{rawhtml} + +\end{rawhtml} The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal tool to study internal wave @@ -269,6 +293,9 @@ %%CNHend \subsection{Parameter sensitivity using the adjoint of MITgcm} +\begin{rawhtml} + +\end{rawhtml} Forward and tangent linear counterparts of MITgcm are supported using an `automatic adjoint compiler'. These can be used in parameter sensitivity and @@ -289,22 +316,30 @@ %%CNHend \subsection{Global state estimation of the ocean} +\begin{rawhtml} + +\end{rawhtml} + An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined `cost function', which measures the departure of the model from observations (both remotely sensed and in-situ) over an interval of time, is minimized by adjusting `control parameters' such as air-sea fluxes, the wind field, the initial conditions -etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean -surface elevation of the ocean obtained by bringing the model in to +etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary +circulation and a Hopf-Muller plot of Equatorial sea-surface height. +Both are obtained from assimilation bringing the model in to consistency with altimetric and in-situ observations over the period -1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} +1992-1997. %% CNHbegin \input{part1/assim_figure} %% CNHend \subsection{Ocean biogeochemical cycles} +\begin{rawhtml} + +\end{rawhtml} MITgcm is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of interannual changes in meteorological @@ -320,9 +355,12 @@ %%CNHend \subsection{Simulations of laboratory experiments} +\begin{rawhtml} + +\end{rawhtml} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a -laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An +laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water ($1m$ in diameter) is driven from its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of fluid which becomes baroclinically @@ -334,10 +372,13 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} +\begin{rawhtml} + +\end{rawhtml} To render atmosphere and ocean models from one dynamical core we exploit `isomorphisms' between equation sets that govern the evolution of the @@ -346,8 +387,8 @@ and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean is being studied. Thus, for example, the vertical coordinate `$r$' is interpreted as pressure, $p$, if we are -modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) -and height, $z$, if we are modeling the ocean (right hand side of figure +modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations}) +and height, $z$, if we are modeling the ocean (left hand side of figure \ref{fig:isomorphic-equations}). %%CNHbegin @@ -471,12 +512,12 @@ at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): \begin{equation} -\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} +\dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} \label{eq:fixedbc} \end{equation} \begin{equation} -\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ +\dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \ (ocean surface,bottom of the atmosphere)} \label{eq:movingbc} \end{equation} @@ -614,6 +655,10 @@ \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms} +\begin{rawhtml} + +\end{rawhtml} + Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: @@ -1073,7 +1118,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1200,7 +1245,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1416,7 +1461,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.19 2004/03/23 16:47:04 afe Exp $ % $Name: $ \section{Appendix:OPERATORS}