--- manual/s_overview/text/manual.tex 2001/11/13 20:13:07 1.9 +++ manual/s_overview/text/manual.tex 2001/11/19 19:58:20 1.13 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ %tci%\documentclass[12pt]{book} @@ -34,7 +34,7 @@ % Section: Overview -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Introduction} @@ -83,13 +83,57 @@ computational platforms. \end{itemize} -Key publications reporting on and charting the development of the model are -listed in an Appendix. +Key publications reporting on and charting the development of the model are: + +\begin{verbatim} + +Hill, C. and J. Marshall, (1995) +Application of a Parallel Navier-Stokes Model to Ocean Circulation in +Parallel Computational Fluid Dynamics +In Proceedings of Parallel Computational Fluid Dynamics: Implementations +and Results Using Parallel Computers, 545-552. +Elsevier Science B.V.: New York + +Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) +Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, +J. Geophysical Res., 102(C3), 5733-5752. + +Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) +A finite-volume, incompressible Navier Stokes model for studies of the ocean +on parallel computers, +J. Geophysical Res., 102(C3), 5753-5766. + +Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) +Representation of topography by shaved cells in a height coordinate ocean +model +Mon Wea Rev, vol 125, 2293-2315 + +Marshall, J., Jones, H. and C. Hill, (1998) +Efficient ocean modeling using non-hydrostatic algorithms +Journal of Marine Systems, 18, 115-134 + +Adcroft, A., Hill C. and J. Marshall: (1999) +A new treatment of the Coriolis terms in C-grid models at both high and low +resolutions, +Mon. Wea. Rev. Vol 127, pages 1928-1936 + +Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) +A Strategy for Terascale Climate Modeling. +In Proceedings of the Eight ECMWF Workshop on the Use of Parallel Processors +in Meteorology + +Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) +Construction of the adjoint MIT ocean general circulation model and +application to Atlantic heat transport variability +J. Geophysical Res., 104(C12), 29,529-29,547. + + +\end{verbatim} We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems that can be addressed using it. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Illustrations of the model in action} @@ -102,7 +146,7 @@ numerical algorithm and implementation that lie behind these calculations is given later. Indeed many of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you need is a PC -running linux, together with a FORTRAN\ 77 compiler) and follow the examples +running Linux, together with a FORTRAN\ 77 compiler) and follow the examples described in detail in the documentation. \subsection{Global atmosphere: `Held-Suarez' benchmark} @@ -126,7 +170,7 @@ %% CNHend As described in Adcroft (2001), a `cubed sphere' is used to discretize the -globe permitting a uniform gridding and obviated the need to Fourier filter. +globe permitting a uniform griding and obviated the need to Fourier filter. The `vector-invariant' form of MITgcm supports any orthogonal curvilinear grid, of which the cubed sphere is just one of many choices. @@ -163,7 +207,7 @@ visible. %% CNHbegin -\input{part1/ocean_gyres_figure} +\input{part1/atl6_figure} %% CNHend @@ -231,7 +275,7 @@ As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude -of the overturning streamfunction shown in figure \ref{fig:large-scale-circ} +of the overturning stream-function shown in figure \ref{fig:large-scale-circ} at 60$^{\circ }$N and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over a 100 year period. We see that $J$ is @@ -248,7 +292,7 @@ An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined `cost function', which measures the departure of the model from observations (both remotely sensed and -insitu) over an interval of time, is minimized by adjusting `control +in-situ) over an interval of time, is minimized by adjusting `control parameters' such as air-sea fluxes, the wind field, the initial conditions etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean surface elevation of the ocean obtained by bringing the model in to @@ -256,7 +300,7 @@ 1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} %% CNHbegin -\input{part1/globes_figure} +\input{part1/assim_figure} %% CNHend \subsection{Ocean biogeochemical cycles} @@ -277,7 +321,7 @@ \subsection{Simulations of laboratory experiments} Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a -laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An +laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water ($1m$ in diameter) is driven from its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of fluid which becomes baroclinically @@ -289,7 +333,7 @@ \input{part1/lab_figure} %%CNHend -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Continuous equations in `r' coordinates} @@ -432,7 +476,7 @@ \begin{equation} \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ -(oceansurface,bottomoftheatmosphere)} \label{eq:movingbc} +(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} \end{equation} Here @@ -1028,7 +1072,7 @@ Tangent linear and adjoint counterparts of the forward model are described in Chapter 5. -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -1155,7 +1199,7 @@ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \end{eqnarray} -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Appendix OCEAN} @@ -1178,7 +1222,7 @@ \label{eq:non-boussinesq} \end{eqnarray} These equations permit acoustics modes, inertia-gravity waves, -non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline +non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref @@ -1371,7 +1415,7 @@ _{nh}=0$ form of these equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE). -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.13 2001/11/19 19:58:20 cnh Exp $ % $Name: $ \section{Appendix:OPERATORS}