/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Thu Oct 25 12:06:56 2001 UTC revision 1.15 by cnh, Wed Nov 21 16:33:17 2001 UTC
# Line 83  studies. Line 83  studies.
83  computational platforms.  computational platforms.
84  \end{itemize}  \end{itemize}
85    
86  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are:
87  listed in an Appendix.  
88    \begin{verbatim}
89    
90    Hill, C. and J. Marshall, (1995)
91    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92    Parallel Computational Fluid Dynamics
93    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94    and Results Using Parallel Computers, 545-552.
95    Elsevier Science B.V.: New York
96    
97    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
99    J. Geophysical Res., 102(C3), 5733-5752.
100    
101    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102    A finite-volume, incompressible Navier Stokes model for studies of the ocean
103    on parallel computers,
104    J. Geophysical Res., 102(C3), 5753-5766.
105    
106    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107    Representation of topography by shaved cells in a height coordinate ocean
108    model
109    Mon Wea Rev, vol 125, 2293-2315
110    
111    Marshall, J., Jones, H. and C. Hill, (1998)
112    Efficient ocean modeling using non-hydrostatic algorithms
113    Journal of Marine Systems, 18, 115-134
114    
115    Adcroft, A., Hill C. and J. Marshall: (1999)
116    A new treatment of the Coriolis terms in C-grid models at both high and low
117    resolutions,
118    Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121    A Strategy for Terascale Climate Modeling.
122    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123    in Meteorology, pages 406-425
124    World Scientific Publishing Co: UK
125    
126    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127    Construction of the adjoint MIT ocean general circulation model and
128    application to Atlantic heat transport variability
129    J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131    
132    \end{verbatim}
133    
134  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
135  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
# Line 102  of them here. A more detailed descriptio Line 147  of them here. A more detailed descriptio
147  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
148  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
149  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
150  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
151  described in detail in the documentation.  described in detail in the documentation.
152    
153  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
# Line 126  there are no mountains or land-sea contr Line 171  there are no mountains or land-sea contr
171  %% CNHend  %% CNHend
172    
173  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
174  globe permitting a uniform gridding and obviated the need to Fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
175  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
176  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
177    
# Line 163  warm water northward by the mean flow of Line 208  warm water northward by the mean flow of
208  visible.  visible.
209    
210  %% CNHbegin  %% CNHbegin
211  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
212  %% CNHend  %% CNHend
213    
214    
# Line 191  Dense plumes generated by localized cool Line 236  Dense plumes generated by localized cool
236  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
237  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
238  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
239  eddies. The simulation shown in the figure \ref{fig::convect-and-topo}  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
240  (blue is cold dense fluid, red is  (blue is cold dense fluid, red is
241  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
242  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
# Line 231  data assimilation studies. Line 276  data assimilation studies.
276    
277  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
278  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
279  of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
280  at 60$^{\circ }$N and $  at 60$^{\circ }$N and $
281  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
282  a 100 year period. We see that $J$ is  a 100 year period. We see that $J$ is
# Line 248  yields sensitivities to all other model Line 293  yields sensitivities to all other model
293  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
294  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
295  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
296  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
297  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
298  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
299  surface elevation of the ocean obtained by bringing the model in to  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
300    Both are obtained from assimilation bringing the model in to
301  consistency with altimetric and in-situ observations over the period  consistency with altimetric and in-situ observations over the period
302  1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}  1992-1997.
303    
304  %% CNHbegin  %% CNHbegin
305  \input{part1/globes_figure}  \input{part1/assim_figure}
306  %% CNHend  %% CNHend
307    
308  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
# Line 277  telescoping to $\frac{1}{3}^{\circ}\time Line 323  telescoping to $\frac{1}{3}^{\circ}\time
323  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
324    
325  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
326  laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
327  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
328  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
329  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
# Line 326  see figure \ref{fig:zandp-vert-coord}. Line 372  see figure \ref{fig:zandp-vert-coord}.
372  \begin{equation*}  \begin{equation*}
373  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
374  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
375  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
376  \end{equation*}  \end{equation*}
377    
378  \begin{equation*}  \begin{equation}
379  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
380  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
381  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
382  \end{equation*}  \end{equation}
383    
384  \begin{equation}  \begin{equation}
385  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
386  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
387  \end{equation}  \end{equation}
388    
389  \begin{equation*}  \begin{equation}
390  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
391  \end{equation*}  \end{equation}
392    
393  \begin{equation*}  \begin{equation}
394  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
395  \end{equation*}  \label{eq:potential_temperature}
396    \end{equation}
397    
398  \begin{equation*}  \begin{equation}
399  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
400  \end{equation*}  \label{eq:humidity_salt}
401    \end{equation}
402    
403  Here:  Here:
404    
# Line 430  at fixed and moving $r$ surfaces we set Line 478  at fixed and moving $r$ surfaces we set
478    
479  \begin{equation}  \begin{equation}
480  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
481  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
482  \end{equation}  \end{equation}
483    
484  Here  Here
# Line 523  The boundary conditions at top and botto Line 571  The boundary conditions at top and botto
571  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
572  \end{eqnarray}  \end{eqnarray}
573    
574  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
575  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
576  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
577    
578  \subsection{Ocean}  \subsection{Ocean}
# Line 560  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 608  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
608  \end{eqnarray}  \end{eqnarray}
609  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
610    
611  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
612    of oceanic equations
613  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
614  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
615    
# Line 573  Let us separate $\phi $ in to surface, h Line 622  Let us separate $\phi $ in to surface, h
622  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
623  \label{eq:phi-split}  \label{eq:phi-split}
624  \end{equation}  \end{equation}
625  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
626    
627  \begin{equation}  \begin{equation}
628  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 666  In the above `${r}$' is the distance fro Line 715  In the above `${r}$' is the distance fro
715    
716  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
717  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
718    
719  %%CNHbegin  %%CNHbegin
720  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 730  In the non-hydrostatic ocean model all t Line 777  In the non-hydrostatic ocean model all t
777  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
778  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
779  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
780  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
781  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
782  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
783  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 779  coordinates are supported - see eqs(\ref Line 826  coordinates are supported - see eqs(\ref
826  \subsection{Solution strategy}  \subsection{Solution strategy}
827    
828  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
829  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
830  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
831  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
832  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
833  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 838  atmospheric pressure pushing down on the Line 884  atmospheric pressure pushing down on the
884    
885  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
886    
887  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
888  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
889    
890  \begin{equation*}  \begin{equation*}
891  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 864  r $. The above can be rearranged to yiel Line 910  r $. The above can be rearranged to yiel
910  where we have incorporated a source term.  where we have incorporated a source term.
911    
912  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
913  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
914  be written  be written
915  \begin{equation}  \begin{equation}
916  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 872  be written Line 918  be written
918  \end{equation}  \end{equation}
919  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
920    
921  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
922  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
923  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
924  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
925    
926  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
927    
928  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
929  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
930  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
931    
932  \begin{equation}  \begin{equation}
933  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 911  tangential component of velocity, $v_{T} Line 957  tangential component of velocity, $v_{T}
957  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
958  equations - see below.  equations - see below.
959    
960  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
961    
962  \begin{equation}  \begin{equation}
963  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 951  If the flow is `close' to hydrostatic ba Line 997  If the flow is `close' to hydrostatic ba
997  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
998  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
999    
1000  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1001  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1002    
1003  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 959  does not vanish at $r=R_{moving}$, and s Line 1005  does not vanish at $r=R_{moving}$, and s
1005  \subsubsection{Forcing}  \subsubsection{Forcing}
1006    
1007  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1008  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1009    
1010  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1011    
# Line 1007  salinity ... ). Line 1053  salinity ... ).
1053  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1054    
1055  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in eq(\ref
1056  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1057    
1058  \begin{equation}  \begin{equation}
1059  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1025  to discretize the model. Line 1071  to discretize the model.
1071    
1072  \subsection{Adjoint}  \subsection{Adjoint}
1073    
1074  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1075  in Chapter 5.  in Chapter 5.
1076    
1077  % $Header$  % $Header$
# Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1193  _{o}(p_{o})=g~Z_{topo}$, defined:
1193  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1194  \begin{eqnarray}  \begin{eqnarray}
1195  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1196  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1197  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1198  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1199  \partial p} &=&0 \\  \partial p} &=&0 \\
1200  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1201  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1202  \end{eqnarray}  \end{eqnarray}
1203    
1204  % $Header$  % $Header$
# Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1217  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1217  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1218  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1219  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1220  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1221  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1222  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1223  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1224    \label{eq:non-boussinesq}
1225  \end{eqnarray}  \end{eqnarray}
1226  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1227  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1228  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1229  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1230  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
# Line 1193  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1240  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1240  \end{equation}  \end{equation}
1241    
1242  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1243  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1244  \begin{equation}  \begin{equation}
1245  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1246  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22