/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.21 by edhill, Sat Oct 16 03:40:12 2004 UTC revision 1.30 by jmc, Wed May 11 18:45:43 2016 UTC
# Line 34  Line 34 
34    
35  % Section: Overview  % Section: Overview
36    
 % $Header$  
 % $Name$  
   
37  This document provides the reader with the information necessary to  This document provides the reader with the information necessary to
38  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
39  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
# Line 61  hydrodynamical kernel is used to drive f Line 58  hydrodynamical kernel is used to drive f
58  models - see fig \ref{fig:onemodel}  models - see fig \ref{fig:onemodel}
59    
60  %% CNHbegin  %% CNHbegin
61  \input{part1/one_model_figure}  \input{s_overview/text/one_model_figure}
62  %% CNHend  %% CNHend
63    
64  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
65  small-scale and large scale processes - see fig \ref{fig:all-scales}  small-scale and large scale processes - see fig \ref{fig:all-scales}
66    
67  %% CNHbegin  %% CNHbegin
68  \input{part1/all_scales_figure}  \input{s_overview/text/all_scales_figure}
69  %% CNHend  %% CNHend
70    
71  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
# Line 76  discretization and support for the treat Line 73  discretization and support for the treat
73  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
74    
75  %% CNHbegin  %% CNHbegin
76  \input{part1/fvol_figure}  \input{s_overview/text/fvol_figure}
77  %% CNHend  %% CNHend
78    
79  \item tangent linear and adjoint counterparts are automatically maintained  \item tangent linear and adjoint counterparts are automatically maintained
# Line 87  studies. Line 84  studies.
84  computational platforms.  computational platforms.
85  \end{itemize}  \end{itemize}
86    
87    
88  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
89  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}:  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}
90    (an overview on the model formulation can also be found in \cite{adcroft:04c}):
91    
92  \begin{verbatim}  \begin{verbatim}
93  Hill, C. and J. Marshall, (1995)  Hill, C. and J. Marshall, (1995)
# Line 137  J. Geophysical Res., 104(C12), 29,529-29 Line 136  J. Geophysical Res., 104(C12), 29,529-29
136  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
137  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
138    
 % $Header$  
 % $Name$  
   
139  \section{Illustrations of the model in action}  \section{Illustrations of the model in action}
140    
141  The MITgcm has been designed and used to model a wide range of phenomena,  MITgcm has been designed and used to model a wide range of phenomena,
142  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
143  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
144  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
# Line 165  both atmospheric and oceanographic flows Line 161  both atmospheric and oceanographic flows
161    
162  Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$  Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
163  temperature field obtained using the atmospheric isomorph of MITgcm run at  temperature field obtained using the atmospheric isomorph of MITgcm run at
164  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole  $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
165  (blue) and warm air along an equatorial band (red). Fully developed  (blue) and warm air along an equatorial band (red). Fully developed
166  baroclinic eddies spawned in the northern hemisphere storm track are  baroclinic eddies spawned in the northern hemisphere storm track are
167  evident. There are no mountains or land-sea contrast in this calculation,  evident. There are no mountains or land-sea contrast in this calculation,
# Line 175  in Held and Suarez; 1994 designed to tes Line 171  in Held and Suarez; 1994 designed to tes
171  there are no mountains or land-sea contrast.  there are no mountains or land-sea contrast.
172    
173  %% CNHbegin  %% CNHbegin
174  \input{part1/cubic_eddies_figure}  \input{s_overview/text/cubic_eddies_figure}
175  %% CNHend  %% CNHend
176    
177  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
# Line 191  cube-sphere grid and the flow calculated Line 187  cube-sphere grid and the flow calculated
187  latitude-longitude grid. Both grids are supported within the model.  latitude-longitude grid. Both grids are supported within the model.
188    
189  %% CNHbegin  %% CNHbegin
190  \input{part1/hs_zave_u_figure}  \input{s_overview/text/hs_zave_u_figure}
191  %% CNHend  %% CNHend
192    
193  \subsection{Ocean gyres}  \subsection{Ocean gyres}
# Line 210  diffusive patterns of ocean currents. Bu Line 206  diffusive patterns of ocean currents. Bu
206  increased until the baroclinic instability process is resolved, numerical  increased until the baroclinic instability process is resolved, numerical
207  solutions of a different and much more realistic kind, can be obtained.  solutions of a different and much more realistic kind, can be obtained.
208    
209  Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity  Figure \ref{fig:ocean-gyres} shows the surface temperature and
210  field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal  velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$
211  resolution on a $lat-lon$  horizontal resolution on a \textit{lat-lon} grid in which the pole has
212  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator  been rotated by $90^{\circ }$ on to the equator (to avoid the
213  (to avoid the converging of meridian in northern latitudes). 21 vertical  converging of meridian in northern latitudes). 21 vertical levels are
214  levels are used in the vertical with a `lopped cell' representation of  used in the vertical with a `lopped cell' representation of
215  topography. The development and propagation of anomalously warm and cold  topography. The development and propagation of anomalously warm and
216  eddies can be clearly seen in the Gulf Stream region. The transport of  cold eddies can be clearly seen in the Gulf Stream region. The
217  warm water northward by the mean flow of the Gulf Stream is also clearly  transport of warm water northward by the mean flow of the Gulf Stream
218  visible.  is also clearly visible.
219    
220  %% CNHbegin  %% CNHbegin
221  \input{part1/atl6_figure}  \input{s_overview/text/atl6_figure}
222  %% CNHend  %% CNHend
223    
224    
# Line 231  visible. Line 227  visible.
227  <!-- CMIREDIR:global_ocean_circulation: -->  <!-- CMIREDIR:global_ocean_circulation: -->
228  \end{rawhtml}  \end{rawhtml}
229    
230  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean
231  the surface of a 4$^{\circ }$  currents at the surface of a $4^{\circ }$ global ocean model run with
232  global ocean model run with 15 vertical levels. Lopped cells are used to  15 vertical levels. Lopped cells are used to represent topography on a
233  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ  regular \textit{lat-lon} grid extending from $70^{\circ }N$ to
234  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with  $70^{\circ }S$. The model is driven using monthly-mean winds with
235  mixed boundary conditions on temperature and salinity at the surface. The  mixed boundary conditions on temperature and salinity at the surface.
236  transfer properties of ocean eddies, convection and mixing is parameterized  The transfer properties of ocean eddies, convection and mixing is
237  in this model.  parameterized in this model.
238    
239  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
240  circulation of the global ocean in Sverdrups.  circulation of the global ocean in Sverdrups.
241    
242  %%CNHbegin  %%CNHbegin
243  \input{part1/global_circ_figure}  \input{s_overview/text/global_circ_figure}
244  %%CNHend  %%CNHend
245    
246  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
# Line 267  strong, and replaced by lateral entrainm Line 263  strong, and replaced by lateral entrainm
263  instability of the along-slope current.  instability of the along-slope current.
264    
265  %%CNHbegin  %%CNHbegin
266  \input{part1/convect_and_topo}  \input{s_overview/text/convect_and_topo}
267  %%CNHend  %%CNHend
268    
269  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
# Line 289  using MITgcm's finite volume spatial dis Line 285  using MITgcm's finite volume spatial dis
285  nonhydrostatic dynamics.  nonhydrostatic dynamics.
286    
287  %%CNHbegin  %%CNHbegin
288  \input{part1/boundary_forced_waves}  \input{s_overview/text/boundary_forced_waves}
289  %%CNHend  %%CNHend
290    
291  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
# Line 301  Forward and tangent linear counterparts Line 297  Forward and tangent linear counterparts
297  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
298  data assimilation studies.  data assimilation studies.
299    
300  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}  As one example of application of the MITgcm adjoint, Figure
301  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial
302  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}    \mathcal{H}}$where $J$ is the magnitude of the overturning
303  at 60$^{\circ }$N and $  stream-function shown in figure \ref{fig:large-scale-circ} at
304  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over  $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local
305  a 100 year period. We see that $J$ is  air-sea heat flux over a 100 year period. We see that $J$ is sensitive
306  sensitive to heat fluxes over the Labrador Sea, one of the important sources  to heat fluxes over the Labrador Sea, one of the important sources of
307  of deep water for the thermohaline circulations. This calculation also  deep water for the thermohaline circulations. This calculation also
308  yields sensitivities to all other model parameters.  yields sensitivities to all other model parameters.
309    
310  %%CNHbegin  %%CNHbegin
311  \input{part1/adj_hf_ocean_figure}  \input{s_overview/text/adj_hf_ocean_figure}
312  %%CNHend  %%CNHend
313    
314  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
# Line 333  consistency with altimetric and in-situ Line 329  consistency with altimetric and in-situ
329  1992-1997.  1992-1997.
330    
331  %% CNHbegin  %% CNHbegin
332  \input{part1/assim_figure}  \input{s_overview/text/assim_figure}
333  %% CNHend  %% CNHend
334    
335  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
# Line 341  consistency with altimetric and in-situ Line 337  consistency with altimetric and in-situ
337  <!-- CMIREDIR:ocean_biogeo_cycles: -->  <!-- CMIREDIR:ocean_biogeo_cycles: -->
338  \end{rawhtml}  \end{rawhtml}
339    
340  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the
341  example one can study the effects of interannual changes in meteorological  ocean. For example one can study the effects of interannual changes in
342  forcing and upper ocean circulation on the fluxes of carbon dioxide and  meteorological forcing and upper ocean circulation on the fluxes of
343  oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows  carbon dioxide and oxygen between the ocean and atmosphere. Figure
344  the annual air-sea flux of oxygen and its relation to density outcrops in  \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its
345  the southern oceans from a single year of a global, interannually varying  relation to density outcrops in the southern oceans from a single year
346  simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution  of a global, interannually varying simulation. The simulation is run
347  telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).  at $1^{\circ}\times1^{\circ}$ resolution telescoping to
348    $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not
349    shown).
350    
351  %%CNHbegin  %%CNHbegin
352  \input{part1/biogeo_figure}  \input{s_overview/text/biogeo_figure}
353  %%CNHend  %%CNHend
354    
355  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
# Line 369  arrested by its instability in a process Line 367  arrested by its instability in a process
367  stratification of the ACC.  stratification of the ACC.
368    
369  %%CNHbegin  %%CNHbegin
370  \input{part1/lab_figure}  \input{s_overview/text/lab_figure}
371  %%CNHend  %%CNHend
372    
 % $Header$  
 % $Name$  
   
373  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
374  \begin{rawhtml}  \begin{rawhtml}
375  <!-- CMIREDIR:z-p_isomorphism: -->  <!-- CMIREDIR:z-p_isomorphism: -->
# Line 392  and height, $z$, if we are modeling the Line 387  and height, $z$, if we are modeling the
387  \ref{fig:isomorphic-equations}).  \ref{fig:isomorphic-equations}).
388    
389  %%CNHbegin  %%CNHbegin
390  \input{part1/zandpcoord_figure.tex}  \input{s_overview/text/zandpcoord_figure.tex}
391  %%CNHend  %%CNHend
392    
393  The state of the fluid at any time is characterized by the distribution of  The state of the fluid at any time is characterized by the distribution of
# Line 406  kinematic boundary conditions can be app Line 401  kinematic boundary conditions can be app
401  see figure \ref{fig:zandp-vert-coord}.  see figure \ref{fig:zandp-vert-coord}.
402    
403  %%CNHbegin  %%CNHbegin
404  \input{part1/vertcoord_figure.tex}  \input{s_overview/text/vertcoord_figure.tex}
405  %%CNHend  %%CNHend
406    
407  \begin{equation}  \begin{equation}
# Line 657  which, for convenience, are written out Line 652  which, for convenience, are written out
652    
653  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
654  Non-hydrostatic forms}  Non-hydrostatic forms}
655    \label{sec:all_hydrostatic_forms}
656  \begin{rawhtml}  \begin{rawhtml}
657  <!-- CMIREDIR:non_hydrostatic: -->  <!-- CMIREDIR:non_hydrostatic: -->
658  \end{rawhtml}  \end{rawhtml}
# Line 765  Grad and div operators in spherical coor Line 761  Grad and div operators in spherical coor
761  OPERATORS.  OPERATORS.
762    
763  %%CNHbegin  %%CNHbegin
764  \input{part1/sphere_coord_figure.tex}  \input{s_overview/text/sphere_coord_figure.tex}
765  %%CNHend  %%CNHend
766    
767  \subsubsection{Shallow atmosphere approximation}  \subsubsection{Shallow atmosphere approximation}
768    
769  Most models are based on the `hydrostatic primitive equations' (HPE's) in  Most models are based on the `hydrostatic primitive equations' (HPE's)
770  which the vertical momentum equation is reduced to a statement of  in which the vertical momentum equation is reduced to a statement of
771  hydrostatic balance and the `traditional approximation' is made in which the  hydrostatic balance and the `traditional approximation' is made in
772  Coriolis force is treated approximately and the shallow atmosphere  which the Coriolis force is treated approximately and the shallow
773  approximation is made.\ The MITgcm need not make the `traditional  atmosphere approximation is made.  MITgcm need not make the
774  approximation'. To be able to support consistent non-hydrostatic forms the  `traditional approximation'. To be able to support consistent
775  shallow atmosphere approximation can be relaxed - when dividing through by $  non-hydrostatic forms the shallow atmosphere approximation can be
776  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,  relaxed - when dividing through by $ r $ in, for example,
777  the radius of the earth.  (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
778    the earth.
779    
780  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
781  \label{sec:hydrostatic_and_quasi-hydrostatic_forms}  \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
# Line 815  et.al., 1997a. As in \textbf{HPE }only a Line 812  et.al., 1997a. As in \textbf{HPE }only a
812    
813  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
814    
815  The MIT model presently supports a full non-hydrostatic ocean isomorph, but  MITgcm presently supports a full non-hydrostatic ocean isomorph, but
816  only a quasi-non-hydrostatic atmospheric isomorph.  only a quasi-non-hydrostatic atmospheric isomorph.
817    
818  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
# Line 885  stepping forward the horizontal momentum Line 882  stepping forward the horizontal momentum
882  stepping forward the vertical momentum equation.  stepping forward the vertical momentum equation.
883    
884  %%CNHbegin  %%CNHbegin
885  \input{part1/solution_strategy_figure.tex}  \input{s_overview/text/solution_strategy_figure.tex}
886  %%CNHend  %%CNHend
887    
888  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
# Line 1074  friction. These coefficients are the sam Line 1071  friction. These coefficients are the sam
1071    
1072  The mixing terms for the temperature and salinity equations have a similar  The mixing terms for the temperature and salinity equations have a similar
1073  form to that of momentum except that the diffusion tensor can be  form to that of momentum except that the diffusion tensor can be
1074  non-diagonal and have varying coefficients. $\qquad $  non-diagonal and have varying coefficients.
1075  \begin{equation}  \begin{equation}
1076  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1077  _{h}^{4}(T,S)  \label{eq:diffusion}  _{h}^{4}(T,S)  \label{eq:diffusion}
# Line 1123  to discretize the model. Line 1120  to discretize the model.
1120  Tangent linear and adjoint counterparts of the forward model are described  Tangent linear and adjoint counterparts of the forward model are described
1121  in Chapter 5.  in Chapter 5.
1122    
 % $Header$  
 % $Name$  
   
1123  \section{Appendix ATMOSPHERE}  \section{Appendix ATMOSPHERE}
1124    
1125  \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure  \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
# Line 1145  p\alpha &=&RT  \label{eq:atmos-eos} \\ Line 1139  p\alpha &=&RT  \label{eq:atmos-eos} \\
1139  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}
1140  \end{eqnarray}  \end{eqnarray}
1141  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1142  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t}
1143  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total  +\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$
1144  derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is  is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter,
1145  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp  $\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume,
1146  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref  $\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate.
1147  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $  Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal
1148  e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $  energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass
1149  p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.  and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1150    
1151  It is convenient to cast the heat equation in terms of potential temperature  It is convenient to cast the heat equation in terms of potential temperature
1152  $\theta $ so that it looks more like a generic conservation law.  $\theta $ so that it looks more like a generic conservation law.
# Line 1213  In $p$-coordinates, the upper boundary a Line 1207  In $p$-coordinates, the upper boundary a
1207  surface ($\phi $ is imposed and $\omega \neq 0$).  surface ($\phi $ is imposed and $\omega \neq 0$).
1208    
1209  \subsubsection{Splitting the geo-potential}  \subsubsection{Splitting the geo-potential}
1210    \label{sec:hpe-p-geo-potential-split}
1211    
1212  For the purposes of initialization and reducing round-off errors, the model  For the purposes of initialization and reducing round-off errors, the model
1213  deals with perturbations from reference (or ``standard'') profiles. For  deals with perturbations from reference (or ``standard'') profiles. For
# Line 1251  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } Line 1246  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime }
1246  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1247  \end{eqnarray}  \end{eqnarray}
1248    
 % $Header$  
 % $Name$  
   
1249  \section{Appendix OCEAN}  \section{Appendix OCEAN}
1250    
1251  \subsection{Equations of motion for the ocean}  \subsection{Equations of motion for the ocean}
# Line 1468  the perturbation density. Nevertheless, Line 1460  the perturbation density. Nevertheless,
1460  _{nh}=0$ form of these equations that are used throughout the ocean modeling  _{nh}=0$ form of these equations that are used throughout the ocean modeling
1461  community and referred to as the primitive equations (HPE).  community and referred to as the primitive equations (HPE).
1462    
 % $Header$  
 % $Name$  
   
1463  \section{Appendix:OPERATORS}  \section{Appendix:OPERATORS}
1464    
1465  \subsection{Coordinate systems}  \subsection{Coordinate systems}
# Line 1485  u=r\cos \varphi \frac{D\lambda }{Dt} Line 1474  u=r\cos \varphi \frac{D\lambda }{Dt}
1474  \end{equation*}  \end{equation*}
1475    
1476  \begin{equation*}  \begin{equation*}
1477  v=r\frac{D\varphi }{Dt}\qquad  v=r\frac{D\varphi }{Dt}
1478  \end{equation*}  \end{equation*}
 $\qquad \qquad \qquad \qquad $  
1479    
1480  \begin{equation*}  \begin{equation*}
1481  \dot{r}=\frac{Dr}{Dt}  \dot{r}=\frac{Dr}{Dt}
# Line 1497  Here $\varphi $ is the latitude, $\lambd Line 1485  Here $\varphi $ is the latitude, $\lambd
1485  distance of the particle from the center of the earth, $\Omega $ is the  distance of the particle from the center of the earth, $\Omega $ is the
1486  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1487    
1488  The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in  The `grad' ($\nabla $) and `div' ($\nabla\cdot$) operators are defined by, in
1489  spherical coordinates:  spherical coordinates:
1490    
1491  \begin{equation*}  \begin{equation*}
# Line 1507  spherical coordinates: Line 1495  spherical coordinates:
1495  \end{equation*}  \end{equation*}
1496    
1497  \begin{equation*}  \begin{equation*}
1498  \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial  \nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1499  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1500  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1501  \end{equation*}  \end{equation*}

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.30

  ViewVC Help
Powered by ViewVC 1.1.22