1 |
%%%% % $Header$ |
% $Header$ |
2 |
%%%% % $Name$ |
% $Name$ |
3 |
%%%% %\usepackage{oldgerm} |
%\usepackage{oldgerm} |
4 |
%%%% % I commented the following because it introduced excessive white space |
% I commented the following because it introduced excessive white space |
5 |
%%%% %\usepackage{palatcm} % better PDF |
%\usepackage{palatcm} % better PDF |
6 |
%%%% % page headers and footers |
% page headers and footers |
7 |
%%%% %\pagestyle{fancy} |
%\pagestyle{fancy} |
8 |
%%%% % referencing |
% referencing |
9 |
%%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
%% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
10 |
%%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
%% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
11 |
%%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
%% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
12 |
%%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
%% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
13 |
%%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
%% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
14 |
%%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
%% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
15 |
%%%% % stuff for psfrag |
% stuff for psfrag |
16 |
%%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
%% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
17 |
%%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
%% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
18 |
%%%% % This allows numbering of subsubsections |
% This allows numbering of subsubsections |
19 |
%%%% % This changes the the chapter title |
% This changes the the chapter title |
20 |
%%%% %\renewcommand{\chaptername}{Section} |
%\renewcommand{\chaptername}{Section} |
21 |
|
|
22 |
|
|
23 |
%%%% \documentclass[12pt]{book} |
%%%% \documentclass[12pt]{book} |
24 |
%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
25 |
%%%% \usepackage{amsmath} |
%%%% \usepackage{amsmath} |
26 |
%%%% \usepackage{html} |
%%%% \usepackage{html} |
27 |
%%%% \usepackage{epsfig} |
%%%% \usepackage{epsfig} |
30 |
%%%% \usepackage{multirow} |
%%%% \usepackage{multirow} |
31 |
%%%% \usepackage{fancyhdr} |
%%%% \usepackage{fancyhdr} |
32 |
%%%% \usepackage{psfrag} |
%%%% \usepackage{psfrag} |
33 |
%%%% |
|
34 |
%%%% %TCIDATA{OutputFilter=Latex.dll} |
%%%% %TCIDATA{OutputFilter=Latex.dll} |
35 |
%%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02} |
%%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
36 |
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
37 |
%%%% %TCIDATA{Language=American English} |
%%%% %TCIDATA{Language=American English} |
38 |
%%%% |
|
39 |
%%%% \fancyhead{} |
%%%% \fancyhead{} |
40 |
%%%% \fancyhead[LO]{\slshape \rightmark} |
%%%% \fancyhead[LO]{\slshape \rightmark} |
41 |
%%%% \fancyhead[RE]{\slshape \leftmark} |
%%%% \fancyhead[RE]{\slshape \leftmark} |
45 |
%%%% \renewcommand{\headrulewidth}{0.4pt} |
%%%% \renewcommand{\headrulewidth}{0.4pt} |
46 |
%%%% \renewcommand{\footrulewidth}{0.4pt} |
%%%% \renewcommand{\footrulewidth}{0.4pt} |
47 |
%%%% \setcounter{secnumdepth}{3} |
%%%% \setcounter{secnumdepth}{3} |
|
%%%% |
|
48 |
%%%% \input{tcilatex} |
%%%% \input{tcilatex} |
49 |
%%%% |
%%%% |
50 |
%%%% \begin{document} |
%%%% \begin{document} |
51 |
%%%% |
%%%% |
52 |
%%%% \tableofcontents |
%%%% \tableofcontents |
53 |
|
%%%% |
54 |
|
%%%% \pagebreak |
55 |
|
|
56 |
\pagebreak |
%%%% \part{MIT GCM basics} |
|
|
|
|
\part{MITgcm basics} |
|
57 |
|
|
58 |
% Section: Overview |
% Section: Overview |
59 |
|
|
77 |
\begin{itemize} |
\begin{itemize} |
78 |
\item it can be used to study both atmospheric and oceanic phenomena; one |
\item it can be used to study both atmospheric and oceanic phenomena; one |
79 |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
80 |
models - see fig.1% |
models - see fig% |
81 |
\marginpar{ |
\marginpar{ |
82 |
Fig.1 One model}\ref{fig:onemodel} |
Fig.1 One model}\ref{fig:onemodel} |
83 |
|
|
84 |
\begin{figure} |
%% CNHbegin |
85 |
\begin{center} |
\input{part1/one_model_figure} |
86 |
\resizebox{!}{4in}{ |
%% CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:onemodel} |
|
|
\end{figure} |
|
87 |
|
|
88 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
89 |
small-scale and large scale processes - see fig.2% |
small-scale and large scale processes - see fig % |
90 |
\marginpar{ |
\marginpar{ |
91 |
Fig.2 All scales}\ref{fig:all-scales} |
Fig.2 All scales}\ref{fig:all-scales} |
92 |
|
|
93 |
|
%% CNHbegin |
94 |
\begin{figure} |
\input{part1/all_scales_figure} |
95 |
\begin{center} |
%% CNHend |
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:scales} |
|
|
\end{figure} |
|
|
|
|
96 |
|
|
97 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
98 |
discretization and support for the treatment of irregular geometries using |
discretization and support for the treatment of irregular geometries using |
99 |
orthogonal curvilinear grids and shaved cells - see fig.3% |
orthogonal curvilinear grids and shaved cells - see fig % |
100 |
\marginpar{ |
\marginpar{ |
101 |
Fig.3 Finite volumes}\ref{fig:Finite volumes} |
Fig.3 Finite volumes}\ref{fig:finite-volumes} |
102 |
|
|
103 |
|
%% CNHbegin |
104 |
|
\input{part1/fvol_figure} |
105 |
|
%% CNHend |
106 |
|
|
107 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
108 |
along with the forward model, permitting sensitivity and optimization |
along with the forward model, permitting sensitivity and optimization |
130 |
kinds of problems the model has been used to study, we briefly describe some |
kinds of problems the model has been used to study, we briefly describe some |
131 |
of them here. A more detailed description of the underlying formulation, |
of them here. A more detailed description of the underlying formulation, |
132 |
numerical algorithm and implementation that lie behind these calculations is |
numerical algorithm and implementation that lie behind these calculations is |
133 |
given later. Indeed it is easy to reproduce the results shown here: simply |
given later. Indeed many of the illustrative examples shown below can be |
134 |
download the model (the minimum you need is a PC running linux, together |
easily reproduced: simply download the model (the minimum you need is a PC |
135 |
with a FORTRAN\ 77 compiler) and follow the examples. |
running linux, together with a FORTRAN\ 77 compiler) and follow the examples |
136 |
|
described in detail in the documentation. |
137 |
|
|
138 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
139 |
|
|
140 |
Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height |
A novel feature of MITgcm is its ability to simulate both atmospheric and |
141 |
field obtained using a 5-level version of the atmospheric pressure isomorph |
oceanographic flows at both small and large scales. |
|
run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies |
|
|
along the northern hemisphere storm track. There are no mountains or |
|
|
land-sea contrast in this calculation, but you can easily put them in. The |
|
|
model is driven by relaxation to a radiative-convective equilibrium profile, |
|
|
following the description set out in Held and Suarez; 1994 designed to test |
|
|
atmospheric hydrodynamical cores - there are no mountains or land-sea |
|
|
contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to |
|
|
descretize the globe permitting a uniform gridding and obviated the need to |
|
|
fourier filter. |
|
142 |
|
|
143 |
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ |
144 |
wind and meridional overturning streamfunction from the 5-level model. |
temperature field obtained using the atmospheric isomorph of MITgcm run at |
145 |
|
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole |
146 |
|
(blue) and warm air along an equatorial band (red). Fully developed |
147 |
\begin{figure} |
baroclinic eddies spawned in the northern hemisphere storm track are |
148 |
\begin{center} |
evident. There are no mountains or land-sea contrast in this calculation, |
149 |
\resizebox{!}{4in}{ |
but you can easily put them in. The model is driven by relaxation to a |
150 |
\rotatebox{90}{ |
radiative-convective equilibrium profile, following the description set out |
151 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps} |
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - |
152 |
} |
there are no mountains or land-sea contrast. |
153 |
} |
|
154 |
\end{center} |
%% CNHbegin |
155 |
\label{fig:hscs} |
\input{part1/cubic_eddies_figure} |
156 |
\end{figure} |
%% CNHend |
157 |
|
|
158 |
|
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
159 |
|
globe permitting a uniform gridding and obviated the need to fourier filter. |
160 |
|
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
161 |
|
grid, of which the cubed sphere is just one of many choices. |
162 |
|
|
163 |
|
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
164 |
|
wind and meridional overturning streamfunction from a 20-level version of |
165 |
|
the model. It compares favorable with more conventional spatial |
166 |
|
discretization approaches. |
167 |
|
|
168 |
A regular spherical lat-lon grid can also be used. |
A regular spherical lat-lon grid can also be used. |
169 |
|
|
170 |
\begin{figure} |
%% CNHbegin |
171 |
\begin{center} |
\input{part1/hs_zave_u_figure} |
172 |
\resizebox{!}{4in}{ |
%% CNHend |
|
\rotatebox{90}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:hslatlon} |
|
|
\end{figure} |
|
173 |
|
|
174 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
175 |
|
|
176 |
|
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
177 |
|
atmosphere. Ocean eddies play an important role in modifying the |
178 |
|
hydrographic structure and current systems of the oceans. Coarse resolution |
179 |
|
models of the oceans cannot resolve the eddy field and yield rather broad, |
180 |
|
diffusive patterns of ocean currents. But if the resolution of our models is |
181 |
|
increased until the baroclinic instability process is resolved, numerical |
182 |
|
solutions of a different and much more realistic kind, can be obtained. |
183 |
|
|
184 |
|
Fig. ?.? shows the surface temperature and velocity field obtained from |
185 |
|
MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$ |
186 |
|
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator |
187 |
|
(to avoid the converging of meridian in northern latitudes). 21 vertical |
188 |
|
levels are used in the vertical with a `lopped cell' representation of |
189 |
|
topography. The development and propagation of anomalously warm and cold |
190 |
|
eddies can be clearly been seen in the Gulf Stream region. The transport of |
191 |
|
warm water northward by the mean flow of the Gulf Stream is also clearly |
192 |
|
visible. |
193 |
|
|
194 |
|
%% CNHbegin |
195 |
|
\input{part1/ocean_gyres_figure} |
196 |
|
%% CNHend |
197 |
|
|
198 |
|
|
199 |
\subsection{Global ocean circulation} |
\subsection{Global ocean circulation} |
200 |
|
|
201 |
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
202 |
global ocean model run with 15 vertical levels. The model is driven using |
global ocean model run with 15 vertical levels. Lopped cells are used to |
203 |
monthly-mean winds with mixed boundary conditions on temperature and |
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ |
204 |
salinity at the surface. Fig.E2b shows the overturning (thermohaline) |
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with |
205 |
circulation. Lopped cells are used to represent topography on a regular $% |
mixed boundary conditions on temperature and salinity at the surface. The |
206 |
lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$. |
transfer properties of ocean eddies, convection and mixing is parameterized |
207 |
|
in this model. |
208 |
|
|
209 |
\begin{figure} |
Fig.E2b shows the meridional overturning circulation of the global ocean in |
210 |
\begin{center} |
Sverdrups. |
211 |
\resizebox{!}{4in}{ |
|
212 |
% \rotatebox{90}{ |
%%CNHbegin |
213 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps} |
\input{part1/global_circ_figure} |
214 |
% } |
%%CNHend |
215 |
} |
|
216 |
\end{center} |
\subsection{Convection and mixing over topography} |
217 |
\label{fig:horizcirc} |
|
218 |
\end{figure} |
Dense plumes generated by localized cooling on the continental shelf of the |
219 |
|
ocean may be influenced by rotation when the deformation radius is smaller |
220 |
\begin{figure} |
than the width of the cooling region. Rather than gravity plumes, the |
221 |
\begin{center} |
mechanism for moving dense fluid down the shelf is then through geostrophic |
222 |
\resizebox{!}{4in}{ |
eddies. The simulation shown in the figure (blue is cold dense fluid, red is |
223 |
\rotatebox{90}{ |
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
224 |
\rotatebox{180}{ |
trigger convection by surface cooling. The cold, dense water falls down the |
225 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps} |
slope but is deflected along the slope by rotation. It is found that |
226 |
} |
entrainment in the vertical plane is reduced when rotational control is |
227 |
} |
strong, and replaced by lateral entrainment due to the baroclinic |
228 |
} |
instability of the along-slope current. |
229 |
\end{center} |
|
230 |
\label{fig:moc} |
%%CNHbegin |
231 |
\end{figure} |
\input{part1/convect_and_topo} |
232 |
|
%%CNHend |
|
|
|
|
\subsection{Flow over topography} |
|
|
|
|
|
\subsection{Ocean convection} |
|
|
|
|
|
Fig.E3 shows convection over a slope using the non-hydrostatic ocean |
|
|
isomorph and lopped cells to respresent topography. .....The grid resolution |
|
|
is |
|
233 |
|
|
234 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
235 |
|
|
236 |
\subsection{Carbon outgassing sensitivity} |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
237 |
|
presence of complex geometry makes it an ideal tool to study internal wave |
238 |
Fig.E4 shows.... |
dynamics and mixing in oceanic canyons and ridges driven by large amplitude |
239 |
|
barotropic tidal currents imposed through open boundary conditions. |
240 |
\begin{figure} |
|
241 |
\begin{center} |
Fig. ?.? shows the influence of cross-slope topographic variations on |
242 |
\resizebox{!}{4in}{ |
internal wave breaking - the cross-slope velocity is in color, the density |
243 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps} |
contoured. The internal waves are excited by application of open boundary |
244 |
} |
conditions on the left.\ They propagate to the sloping boundary (represented |
245 |
\end{center} |
using MITgcm's finite volume spatial discretization) where they break under |
246 |
\label{fig:co2mrt} |
nonhydrostatic dynamics. |
247 |
\end{figure} |
|
248 |
|
%%CNHbegin |
249 |
|
\input{part1/boundary_forced_waves} |
250 |
|
%%CNHend |
251 |
|
|
252 |
|
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
253 |
|
|
254 |
|
Forward and tangent linear counterparts of MITgcm are supported using an |
255 |
|
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
256 |
|
data assimilation studies. |
257 |
|
|
258 |
|
As one example of application of the MITgcm adjoint, Fig.E4 maps the |
259 |
|
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
260 |
|
of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $% |
261 |
|
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is |
262 |
|
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
263 |
|
of deep water for the thermohaline circulations. This calculation also |
264 |
|
yields sensitivities to all other model parameters. |
265 |
|
|
266 |
|
%%CNHbegin |
267 |
|
\input{part1/adj_hf_ocean_figure} |
268 |
|
%%CNHend |
269 |
|
|
270 |
|
\subsection{Global state estimation of the ocean} |
271 |
|
|
272 |
|
An important application of MITgcm is in state estimation of the global |
273 |
|
ocean circulation. An appropriately defined `cost function', which measures |
274 |
|
the departure of the model from observations (both remotely sensed and |
275 |
|
insitu) over an interval of time, is minimized by adjusting `control |
276 |
|
parameters' such as air-sea fluxes, the wind field, the initial conditions |
277 |
|
etc. Figure ?.? shows an estimate of the time-mean surface elevation of the |
278 |
|
ocean obtained by bringing the model in to consistency with altimetric and |
279 |
|
in-situ observations over the period 1992-1997. |
280 |
|
|
281 |
|
%% CNHbegin |
282 |
|
\input{part1/globes_figure} |
283 |
|
%% CNHend |
284 |
|
|
285 |
|
\subsection{Ocean biogeochemical cycles} |
286 |
|
|
287 |
|
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
288 |
|
example one can study the effects of interannual changes in meteorological |
289 |
|
forcing and upper ocean circulation on the fluxes of carbon dioxide and |
290 |
|
oxygen between the ocean and atmosphere. The figure shows the annual air-sea |
291 |
|
flux of oxygen and its relation to density outcrops in the southern oceans |
292 |
|
from a single year of a global, interannually varying simulation. |
293 |
|
|
294 |
|
%%CNHbegin |
295 |
|
\input{part1/biogeo_figure} |
296 |
|
%%CNHend |
297 |
|
|
298 |
|
\subsection{Simulations of laboratory experiments} |
299 |
|
|
300 |
|
Figure ?.? shows MITgcm being used to simulate a laboratory experiment |
301 |
|
enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
302 |
|
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
303 |
|
free surface by a rotating heated disk. The combined action of mechanical |
304 |
|
and thermal forcing creates a lens of fluid which becomes baroclinically |
305 |
|
unstable. The stratification and depth of penetration of the lens is |
306 |
|
arrested by its instability in a process analogous to that whic sets the |
307 |
|
stratification of the ACC. |
308 |
|
|
309 |
|
%%CNHbegin |
310 |
|
\input{part1/lab_figure} |
311 |
|
%%CNHend |
312 |
|
|
313 |
% $Header$ |
% $Header$ |
314 |
% $Name$ |
% $Name$ |
325 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
326 |
modeling the atmosphere and height, $z$, if we are modeling the ocean. |
modeling the atmosphere and height, $z$, if we are modeling the ocean. |
327 |
|
|
328 |
|
%%CNHbegin |
329 |
|
\input{part1/zandpcoord_figure.tex} |
330 |
|
%%CNHend |
331 |
|
|
332 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
333 |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
334 |
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
339 |
\marginpar{ |
\marginpar{ |
340 |
Fig.5 The vertical coordinate of model}: |
Fig.5 The vertical coordinate of model}: |
341 |
|
|
342 |
\begin{figure} |
%%CNHbegin |
343 |
\begin{center} |
\input{part1/vertcoord_figure.tex} |
344 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:vertcoord} |
|
|
\end{figure} |
|
345 |
|
|
346 |
\begin{equation*} |
\begin{equation*} |
347 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
361 |
\end{equation} |
\end{equation} |
362 |
|
|
363 |
\begin{equation*} |
\begin{equation*} |
364 |
b=b(\theta ,S,r)\text{ equation of state} |
b=b(\theta ,S,r)\text{ equation of state} |
365 |
\end{equation*} |
\end{equation*} |
366 |
|
|
367 |
\begin{equation*} |
\begin{equation*} |
368 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
369 |
\end{equation*} |
\end{equation*} |
370 |
|
|
371 |
\begin{equation*} |
\begin{equation*} |
372 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
373 |
\end{equation*} |
\end{equation*} |
374 |
|
|
375 |
Here: |
Here: |
376 |
|
|
377 |
\begin{equation*} |
\begin{equation*} |
378 |
r\text{ is the vertical coordinate} |
r\text{ is the vertical coordinate} |
379 |
\end{equation*} |
\end{equation*} |
380 |
|
|
381 |
\begin{equation*} |
\begin{equation*} |
382 |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
383 |
is the total derivative} |
is the total derivative} |
384 |
\end{equation*} |
\end{equation*} |
385 |
|
|
386 |
\begin{equation*} |
\begin{equation*} |
387 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
388 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
389 |
\end{equation*} |
\end{equation*} |
390 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
391 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
392 |
is a unit vector in the vertical |
is a unit vector in the vertical |
393 |
|
|
394 |
\begin{equation*} |
\begin{equation*} |
395 |
t\text{ is time} |
t\text{ is time} |
396 |
\end{equation*} |
\end{equation*} |
397 |
|
|
398 |
\begin{equation*} |
\begin{equation*} |
399 |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
400 |
velocity} |
velocity} |
401 |
\end{equation*} |
\end{equation*} |
402 |
|
|
403 |
\begin{equation*} |
\begin{equation*} |
404 |
\phi \text{ is the `pressure'/`geopotential'} |
\phi \text{ is the `pressure'/`geopotential'} |
405 |
\end{equation*} |
\end{equation*} |
406 |
|
|
407 |
\begin{equation*} |
\begin{equation*} |
408 |
\vec{\Omega}\text{ is the Earth's rotation} |
\vec{\Omega}\text{ is the Earth's rotation} |
409 |
\end{equation*} |
\end{equation*} |
410 |
|
|
411 |
\begin{equation*} |
\begin{equation*} |
412 |
b\text{ is the `buoyancy'} |
b\text{ is the `buoyancy'} |
413 |
\end{equation*} |
\end{equation*} |
414 |
|
|
415 |
\begin{equation*} |
\begin{equation*} |
416 |
\theta \text{ is potential temperature} |
\theta \text{ is potential temperature} |
417 |
\end{equation*} |
\end{equation*} |
418 |
|
|
419 |
\begin{equation*} |
\begin{equation*} |
420 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
421 |
\end{equation*} |
\end{equation*} |
422 |
|
|
423 |
\begin{equation*} |
\begin{equation*} |
426 |
\end{equation*} |
\end{equation*} |
427 |
|
|
428 |
\begin{equation*} |
\begin{equation*} |
429 |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }% |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta |
|
\theta |
|
430 |
\end{equation*} |
\end{equation*} |
431 |
|
|
432 |
\begin{equation*} |
\begin{equation*} |
455 |
Here |
Here |
456 |
|
|
457 |
\begin{equation*} |
\begin{equation*} |
458 |
R_{moving}=R_{o}+\eta |
R_{moving}=R_{o}+\eta |
459 |
\end{equation*} |
\end{equation*} |
460 |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
461 |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
523 |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
524 |
|
|
525 |
\begin{equation*} |
\begin{equation*} |
526 |
R_{fixed}=p_{top}=0 |
R_{fixed}=p_{top}=0 |
527 |
\end{equation*} |
\end{equation*} |
528 |
In a resting atmosphere the elevation of the mountains at the bottom is |
In a resting atmosphere the elevation of the mountains at the bottom is |
529 |
given by |
given by |
530 |
\begin{equation*} |
\begin{equation*} |
531 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
532 |
\end{equation*} |
\end{equation*} |
533 |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
534 |
atmosphere. |
atmosphere. |
638 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
639 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
640 |
\end{tabular}% |
\end{tabular}% |
641 |
\ \right. \qquad \label{eq:gu-speherical} |
\ \right. \qquad \label{eq:gu-speherical} |
642 |
\end{equation} |
\end{equation} |
643 |
|
|
644 |
\begin{equation} |
\begin{equation} |
657 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
658 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
659 |
\end{tabular}% |
\end{tabular}% |
660 |
\ \right. \qquad \label{eq:gv-spherical} |
\ \right. \qquad \label{eq:gv-spherical} |
661 |
\end{equation}% |
\end{equation}% |
662 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
663 |
|
|
664 |
\begin{equation} |
\begin{equation} |
665 |
\left. |
\left. |
676 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
677 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
678 |
\end{tabular}% |
\end{tabular}% |
679 |
\ \right. \label{eq:gw-spherical} |
\ \right. \label{eq:gw-spherical} |
680 |
\end{equation}% |
\end{equation}% |
681 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
682 |
|
|
683 |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
684 |
' is latitude. |
' is latitude. |
688 |
\marginpar{ |
\marginpar{ |
689 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
690 |
|
|
691 |
\begin{figure} |
%%CNHbegin |
692 |
\begin{center} |
\input{part1/sphere_coord_figure.tex} |
693 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:spcoord} |
|
|
\end{figure} |
|
|
|
|
694 |
|
|
695 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
696 |
|
|
700 |
Coriolis force is treated approximately and the shallow atmosphere |
Coriolis force is treated approximately and the shallow atmosphere |
701 |
approximation is made.\ The MITgcm need not make the `traditional |
approximation is made.\ The MITgcm need not make the `traditional |
702 |
approximation'. To be able to support consistent non-hydrostatic forms the |
approximation'. To be able to support consistent non-hydrostatic forms the |
703 |
shallow atmosphere approximation can be relaxed - when dividing through by $r |
shallow atmosphere approximation can be relaxed - when dividing through by $% |
704 |
$ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
705 |
the radius of the earth. |
the radius of the earth. |
706 |
|
|
707 |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
727 |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
728 |
|
|
729 |
\begin{equation*} |
\begin{equation*} |
730 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
731 |
\end{equation*} |
\end{equation*} |
732 |
making a small correction to the hydrostatic pressure. |
making a small correction to the hydrostatic pressure. |
733 |
|
|
808 |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
809 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
810 |
|
|
811 |
\begin{figure} |
%%CNHbegin |
812 |
\begin{center} |
\input{part1/solution_strategy_figure.tex} |
813 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:solnstart} |
|
|
\end{figure} |
|
|
|
|
814 |
|
|
815 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
816 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
838 |
|
|
839 |
\begin{equation*} |
\begin{equation*} |
840 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
841 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
842 |
\end{equation*} |
\end{equation*} |
843 |
and so |
and so |
844 |
|
|
860 |
|
|
861 |
\begin{equation*} |
\begin{equation*} |
862 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
863 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
864 |
\end{equation*} |
\end{equation*} |
865 |
|
|
866 |
Thus: |
Thus: |
868 |
\begin{equation*} |
\begin{equation*} |
869 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
870 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
871 |
_{h}dr=0 |
_{h}dr=0 |
872 |
\end{equation*} |
\end{equation*} |
873 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
874 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
884 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
885 |
be written |
be written |
886 |
\begin{equation} |
\begin{equation} |
887 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
888 |
\label{eq:phi-surf} |
\label{eq:phi-surf} |
889 |
\end{equation}% |
\end{equation}% |
890 |
where $b_{s}$ is the buoyancy at the surface. |
where $b_{s}$ is the buoyancy at the surface. |
943 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
944 |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
945 |
exploit classical 3D potential theory and, by introducing an appropriately |
exploit classical 3D potential theory and, by introducing an appropriately |
946 |
chosen $\delta $-function sheet of `source-charge', replace the inhomogenous |
chosen $\delta $-function sheet of `source-charge', replace the |
947 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
948 |
in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$ |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $% |
949 |
By simultaneously setting $% |
\vec{\mathbf{F}}.$ By simultaneously setting $% |
950 |
\begin{array}{l} |
\begin{array}{l} |
951 |
\widehat{n}.\vec{\mathbf{F}}% |
\widehat{n}.\vec{\mathbf{F}}% |
952 |
\end{array}% |
\end{array}% |
953 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
954 |
self-consistent but simpler homogenised Elliptic problem is obtained: |
self-consistent but simpler homogenized Elliptic problem is obtained: |
955 |
|
|
956 |
\begin{equation*} |
\begin{equation*} |
957 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
958 |
\end{equation*}% |
\end{equation*}% |
959 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
960 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
1029 |
\begin{equation} |
\begin{equation} |
1030 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
1031 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
1032 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
1033 |
\label{eq:vi-identity} |
\label{eq:vi-identity} |
1034 |
\end{equation}% |
\end{equation}% |
1035 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
1042 |
|
|
1043 |
\subsection{Adjoint} |
\subsection{Adjoint} |
1044 |
|
|
1045 |
Tangent linear and adoint counterparts of the forward model and described in |
Tangent linear and adjoint counterparts of the forward model and described |
1046 |
Chapter 5. |
in Chapter 5. |
1047 |
|
|
1048 |
% $Header$ |
% $Header$ |
1049 |
% $Name$ |
% $Name$ |
1058 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
1059 |
\begin{eqnarray} |
\begin{eqnarray} |
1060 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
1061 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
1062 |
\label{eq:atmos-mom} \\ |
\label{eq:atmos-mom} \\ |
1063 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
1064 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
1065 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
1066 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
1067 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
1068 |
\end{eqnarray}% |
\end{eqnarray}% |
1069 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
1110 |
The heat equation is obtained by noting that |
The heat equation is obtained by noting that |
1111 |
\begin{equation*} |
\begin{equation*} |
1112 |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
1113 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
1114 |
\end{equation*} |
\end{equation*} |
1115 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
1116 |
\begin{equation} |
\begin{equation} |
1189 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
1190 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
1191 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
1192 |
\rho &=&\rho (\theta ,S,p) \\ |
\rho &=&\rho (\theta ,S,p) \\ |
1193 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
1194 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
1195 |
\end{eqnarray}% |
\end{eqnarray}% |
1271 |
pressure in the EOS by splitting the pressure into a reference function of |
pressure in the EOS by splitting the pressure into a reference function of |
1272 |
height and a perturbation: |
height and a perturbation: |
1273 |
\begin{equation*} |
\begin{equation*} |
1274 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
1275 |
\end{equation*} |
\end{equation*} |
1276 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
1277 |
differentiating the EOS, the continuity equation then becomes: |
differentiating the EOS, the continuity equation then becomes: |
1278 |
\begin{equation*} |
\begin{equation*} |
1279 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
1280 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
1281 |
\frac{\partial w}{\partial z}=0 |
\frac{\partial w}{\partial z}=0 |
1282 |
\end{equation*} |
\end{equation*} |
1283 |
If the time- and space-scales of the motions of interest are longer than |
If the time- and space-scales of the motions of interest are longer than |
1284 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
1401 |
and vertical direction respectively, are given by (see Fig.2) : |
and vertical direction respectively, are given by (see Fig.2) : |
1402 |
|
|
1403 |
\begin{equation*} |
\begin{equation*} |
1404 |
u=r\cos \phi \frac{D\lambda }{Dt} |
u=r\cos \phi \frac{D\lambda }{Dt} |
1405 |
\end{equation*} |
\end{equation*} |
1406 |
|
|
1407 |
\begin{equation*} |
\begin{equation*} |
1408 |
v=r\frac{D\phi }{Dt}\qquad |
v=r\frac{D\phi }{Dt}\qquad |
1409 |
\end{equation*} |
\end{equation*} |
1410 |
$\qquad \qquad \qquad \qquad $ |
$\qquad \qquad \qquad \qquad $ |
1411 |
|
|
1412 |
\begin{equation*} |
\begin{equation*} |
1413 |
\dot{r}=\frac{Dr}{Dt} |
\dot{r}=\frac{Dr}{Dt} |
1414 |
\end{equation*} |
\end{equation*} |
1415 |
|
|
1416 |
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
1423 |
\begin{equation*} |
\begin{equation*} |
1424 |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
1425 |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
1426 |
\right) |
\right) |
1427 |
\end{equation*} |
\end{equation*} |
1428 |
|
|
1429 |
\begin{equation*} |
\begin{equation*} |
1430 |
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
1431 |
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
1432 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
1433 |
\end{equation*} |
\end{equation*} |
1434 |
|
|
1435 |
%%%% \end{document} |
%%%% \end{document} |