34 |
|
|
35 |
% Section: Overview |
% Section: Overview |
36 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
37 |
This document provides the reader with the information necessary to |
This document provides the reader with the information necessary to |
38 |
carry out numerical experiments using MITgcm. It gives a comprehensive |
carry out numerical experiments using MITgcm. It gives a comprehensive |
39 |
description of the continuous equations on which the model is based, the |
description of the continuous equations on which the model is based, the |
58 |
models - see fig \ref{fig:onemodel} |
models - see fig \ref{fig:onemodel} |
59 |
|
|
60 |
%% CNHbegin |
%% CNHbegin |
61 |
\input{part1/one_model_figure} |
\input{s_overview/text/one_model_figure} |
62 |
%% CNHend |
%% CNHend |
63 |
|
|
64 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
65 |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
66 |
|
|
67 |
%% CNHbegin |
%% CNHbegin |
68 |
\input{part1/all_scales_figure} |
\input{s_overview/text/all_scales_figure} |
69 |
%% CNHend |
%% CNHend |
70 |
|
|
71 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
73 |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
74 |
|
|
75 |
%% CNHbegin |
%% CNHbegin |
76 |
\input{part1/fvol_figure} |
\input{s_overview/text/fvol_figure} |
77 |
%% CNHend |
%% CNHend |
78 |
|
|
79 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
84 |
computational platforms. |
computational platforms. |
85 |
\end{itemize} |
\end{itemize} |
86 |
|
|
87 |
|
|
88 |
Key publications reporting on and charting the development of the model are |
Key publications reporting on and charting the development of the model are |
89 |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}: |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04} |
90 |
|
(an overview on the model formulation can also be found in \cite{adcroft:04c}): |
91 |
|
|
92 |
\begin{verbatim} |
\begin{verbatim} |
93 |
Hill, C. and J. Marshall, (1995) |
Hill, C. and J. Marshall, (1995) |
136 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
137 |
give a feel for the wide range of problems that can be addressed using it. |
give a feel for the wide range of problems that can be addressed using it. |
138 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
139 |
\section{Illustrations of the model in action} |
\section{Illustrations of the model in action} |
140 |
|
|
141 |
MITgcm has been designed and used to model a wide range of phenomena, |
MITgcm has been designed and used to model a wide range of phenomena, |
171 |
there are no mountains or land-sea contrast. |
there are no mountains or land-sea contrast. |
172 |
|
|
173 |
%% CNHbegin |
%% CNHbegin |
174 |
\input{part1/cubic_eddies_figure} |
\input{s_overview/text/cubic_eddies_figure} |
175 |
%% CNHend |
%% CNHend |
176 |
|
|
177 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
187 |
latitude-longitude grid. Both grids are supported within the model. |
latitude-longitude grid. Both grids are supported within the model. |
188 |
|
|
189 |
%% CNHbegin |
%% CNHbegin |
190 |
\input{part1/hs_zave_u_figure} |
\input{s_overview/text/hs_zave_u_figure} |
191 |
%% CNHend |
%% CNHend |
192 |
|
|
193 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
218 |
is also clearly visible. |
is also clearly visible. |
219 |
|
|
220 |
%% CNHbegin |
%% CNHbegin |
221 |
\input{part1/atl6_figure} |
\input{s_overview/text/atl6_figure} |
222 |
%% CNHend |
%% CNHend |
223 |
|
|
224 |
|
|
240 |
circulation of the global ocean in Sverdrups. |
circulation of the global ocean in Sverdrups. |
241 |
|
|
242 |
%%CNHbegin |
%%CNHbegin |
243 |
\input{part1/global_circ_figure} |
\input{s_overview/text/global_circ_figure} |
244 |
%%CNHend |
%%CNHend |
245 |
|
|
246 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
263 |
instability of the along-slope current. |
instability of the along-slope current. |
264 |
|
|
265 |
%%CNHbegin |
%%CNHbegin |
266 |
\input{part1/convect_and_topo} |
\input{s_overview/text/convect_and_topo} |
267 |
%%CNHend |
%%CNHend |
268 |
|
|
269 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
285 |
nonhydrostatic dynamics. |
nonhydrostatic dynamics. |
286 |
|
|
287 |
%%CNHbegin |
%%CNHbegin |
288 |
\input{part1/boundary_forced_waves} |
\input{s_overview/text/boundary_forced_waves} |
289 |
%%CNHend |
%%CNHend |
290 |
|
|
291 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
308 |
yields sensitivities to all other model parameters. |
yields sensitivities to all other model parameters. |
309 |
|
|
310 |
%%CNHbegin |
%%CNHbegin |
311 |
\input{part1/adj_hf_ocean_figure} |
\input{s_overview/text/adj_hf_ocean_figure} |
312 |
%%CNHend |
%%CNHend |
313 |
|
|
314 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
329 |
1992-1997. |
1992-1997. |
330 |
|
|
331 |
%% CNHbegin |
%% CNHbegin |
332 |
\input{part1/assim_figure} |
\input{s_overview/text/assim_figure} |
333 |
%% CNHend |
%% CNHend |
334 |
|
|
335 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
349 |
shown). |
shown). |
350 |
|
|
351 |
%%CNHbegin |
%%CNHbegin |
352 |
\input{part1/biogeo_figure} |
\input{s_overview/text/biogeo_figure} |
353 |
%%CNHend |
%%CNHend |
354 |
|
|
355 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
367 |
stratification of the ACC. |
stratification of the ACC. |
368 |
|
|
369 |
%%CNHbegin |
%%CNHbegin |
370 |
\input{part1/lab_figure} |
\input{s_overview/text/lab_figure} |
371 |
%%CNHend |
%%CNHend |
372 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
373 |
\section{Continuous equations in `r' coordinates} |
\section{Continuous equations in `r' coordinates} |
374 |
\begin{rawhtml} |
\begin{rawhtml} |
375 |
<!-- CMIREDIR:z-p_isomorphism: --> |
<!-- CMIREDIR:z-p_isomorphism: --> |
387 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
388 |
|
|
389 |
%%CNHbegin |
%%CNHbegin |
390 |
\input{part1/zandpcoord_figure.tex} |
\input{s_overview/text/zandpcoord_figure.tex} |
391 |
%%CNHend |
%%CNHend |
392 |
|
|
393 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
401 |
see figure \ref{fig:zandp-vert-coord}. |
see figure \ref{fig:zandp-vert-coord}. |
402 |
|
|
403 |
%%CNHbegin |
%%CNHbegin |
404 |
\input{part1/vertcoord_figure.tex} |
\input{s_overview/text/vertcoord_figure.tex} |
405 |
%%CNHend |
%%CNHend |
406 |
|
|
407 |
\begin{equation} |
\begin{equation} |
652 |
|
|
653 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
654 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
655 |
|
\label{sec:all_hydrostatic_forms} |
656 |
\begin{rawhtml} |
\begin{rawhtml} |
657 |
<!-- CMIREDIR:non_hydrostatic: --> |
<!-- CMIREDIR:non_hydrostatic: --> |
658 |
\end{rawhtml} |
\end{rawhtml} |
761 |
OPERATORS. |
OPERATORS. |
762 |
|
|
763 |
%%CNHbegin |
%%CNHbegin |
764 |
\input{part1/sphere_coord_figure.tex} |
\input{s_overview/text/sphere_coord_figure.tex} |
765 |
%%CNHend |
%%CNHend |
766 |
|
|
767 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
882 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
883 |
|
|
884 |
%%CNHbegin |
%%CNHbegin |
885 |
\input{part1/solution_strategy_figure.tex} |
\input{s_overview/text/solution_strategy_figure.tex} |
886 |
%%CNHend |
%%CNHend |
887 |
|
|
888 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
1120 |
Tangent linear and adjoint counterparts of the forward model are described |
Tangent linear and adjoint counterparts of the forward model are described |
1121 |
in Chapter 5. |
in Chapter 5. |
1122 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
1123 |
\section{Appendix ATMOSPHERE} |
\section{Appendix ATMOSPHERE} |
1124 |
|
|
1125 |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
1139 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
1140 |
\end{eqnarray} |
\end{eqnarray} |
1141 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
1142 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t} |
1143 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
+\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ |
1144 |
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is |
is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, |
1145 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
$\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume, |
1146 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
$\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate. |
1147 |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal |
1148 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass |
1149 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
1150 |
|
|
1151 |
It is convenient to cast the heat equation in terms of potential temperature |
It is convenient to cast the heat equation in terms of potential temperature |
1152 |
$\theta $ so that it looks more like a generic conservation law. |
$\theta $ so that it looks more like a generic conservation law. |
1246 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
1247 |
\end{eqnarray} |
\end{eqnarray} |
1248 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
1249 |
\section{Appendix OCEAN} |
\section{Appendix OCEAN} |
1250 |
|
|
1251 |
\subsection{Equations of motion for the ocean} |
\subsection{Equations of motion for the ocean} |
1460 |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
1461 |
community and referred to as the primitive equations (HPE). |
community and referred to as the primitive equations (HPE). |
1462 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
1463 |
\section{Appendix:OPERATORS} |
\section{Appendix:OPERATORS} |
1464 |
|
|
1465 |
\subsection{Coordinate systems} |
\subsection{Coordinate systems} |