49 |
|
|
50 |
\section{Introduction} |
\section{Introduction} |
51 |
\begin{rawhtml} |
\begin{rawhtml} |
52 |
<!-- CMIREDIR:innovations --> |
<!-- CMIREDIR:innovations: --> |
53 |
\end{rawhtml} |
\end{rawhtml} |
54 |
|
|
55 |
|
|
155 |
|
|
156 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
157 |
\begin{rawhtml} |
\begin{rawhtml} |
158 |
<!-- CMIREDIR:atmospheric_example --> |
<!-- CMIREDIR:atmospheric_example: --> |
159 |
\end{rawhtml} |
\end{rawhtml} |
160 |
|
|
161 |
|
|
196 |
|
|
197 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
198 |
\begin{rawhtml} |
\begin{rawhtml} |
199 |
<!-- CMIREDIR:oceanic_example --> |
<!-- CMIREDIR:oceanic_example: --> |
200 |
\end{rawhtml} |
\end{rawhtml} |
201 |
\begin{rawhtml} |
\begin{rawhtml} |
202 |
<!-- CMIREDIR:ocean_gyres --> |
<!-- CMIREDIR:ocean_gyres: --> |
203 |
\end{rawhtml} |
\end{rawhtml} |
204 |
|
|
205 |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
228 |
|
|
229 |
\subsection{Global ocean circulation} |
\subsection{Global ocean circulation} |
230 |
\begin{rawhtml} |
\begin{rawhtml} |
231 |
<!-- CMIREDIR:global_ocean_circulation --> |
<!-- CMIREDIR:global_ocean_circulation: --> |
232 |
\end{rawhtml} |
\end{rawhtml} |
233 |
|
|
234 |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
249 |
|
|
250 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
251 |
\begin{rawhtml} |
\begin{rawhtml} |
252 |
<!-- CMIREDIR:mixing_over_topography --> |
<!-- CMIREDIR:mixing_over_topography: --> |
253 |
\end{rawhtml} |
\end{rawhtml} |
254 |
|
|
255 |
|
|
272 |
|
|
273 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
274 |
\begin{rawhtml} |
\begin{rawhtml} |
275 |
<!-- CMIREDIR:boundary_forced_internal_waves --> |
<!-- CMIREDIR:boundary_forced_internal_waves: --> |
276 |
\end{rawhtml} |
\end{rawhtml} |
277 |
|
|
278 |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
294 |
|
|
295 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
296 |
\begin{rawhtml} |
\begin{rawhtml} |
297 |
<!-- CMIREDIR:parameter_sensitivity --> |
<!-- CMIREDIR:parameter_sensitivity: --> |
298 |
\end{rawhtml} |
\end{rawhtml} |
299 |
|
|
300 |
Forward and tangent linear counterparts of MITgcm are supported using an |
Forward and tangent linear counterparts of MITgcm are supported using an |
317 |
|
|
318 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
319 |
\begin{rawhtml} |
\begin{rawhtml} |
320 |
<!-- CMIREDIR:global_state_estimation --> |
<!-- CMIREDIR:global_state_estimation: --> |
321 |
\end{rawhtml} |
\end{rawhtml} |
322 |
|
|
323 |
|
|
338 |
|
|
339 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
340 |
\begin{rawhtml} |
\begin{rawhtml} |
341 |
<!-- CMIREDIR:ocean_biogeo_cycles --> |
<!-- CMIREDIR:ocean_biogeo_cycles: --> |
342 |
\end{rawhtml} |
\end{rawhtml} |
343 |
|
|
344 |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
356 |
|
|
357 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
358 |
\begin{rawhtml} |
\begin{rawhtml} |
359 |
<!-- CMIREDIR:classroom_exp --> |
<!-- CMIREDIR:classroom_exp: --> |
360 |
\end{rawhtml} |
\end{rawhtml} |
361 |
|
|
362 |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
377 |
|
|
378 |
\section{Continuous equations in `r' coordinates} |
\section{Continuous equations in `r' coordinates} |
379 |
\begin{rawhtml} |
\begin{rawhtml} |
380 |
<!-- CMIREDIR:z-p_isomorphism --> |
<!-- CMIREDIR:z-p_isomorphism: --> |
381 |
\end{rawhtml} |
\end{rawhtml} |
382 |
|
|
383 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
409 |
\input{part1/vertcoord_figure.tex} |
\input{part1/vertcoord_figure.tex} |
410 |
%%CNHend |
%%CNHend |
411 |
|
|
412 |
\begin{equation*} |
\begin{equation} |
413 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
414 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
415 |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
416 |
\end{equation*} |
\end{equation} |
417 |
|
|
418 |
\begin{equation} |
\begin{equation} |
419 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
656 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
657 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
658 |
\begin{rawhtml} |
\begin{rawhtml} |
659 |
<!-- CMIREDIR:non_hydrostatic --> |
<!-- CMIREDIR:non_hydrostatic: --> |
660 |
\end{rawhtml} |
\end{rawhtml} |
661 |
|
|
662 |
|
|
666 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
667 |
\label{eq:phi-split} |
\label{eq:phi-split} |
668 |
\end{equation} |
\end{equation} |
669 |
and write eq(\ref{eq:incompressible}) in the form: |
%and write eq(\ref{eq:incompressible}) in the form: |
670 |
|
% ^- this eq is missing (jmc) ; replaced with: |
671 |
|
and write eq( \ref{eq:horizontal_mtm}) in the form: |
672 |
|
|
673 |
\begin{equation} |
\begin{equation} |
674 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |