/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.30 - (show annotations) (download) (as text)
Wed May 11 18:45:43 2016 UTC (9 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.29: +9 -27 lines
File MIME type: application/x-tex
fix definition of total derivative in ATMOSPHERE appendix (section 1.4)

1 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
2 % $Name: $
3
4 %tci%\documentclass[12pt]{book}
5 %tci%\usepackage{amsmath}
6 %tci%\usepackage{html}
7 %tci%\usepackage{epsfig}
8 %tci%\usepackage{graphics,subfigure}
9 %tci%\usepackage{array}
10 %tci%\usepackage{multirow}
11 %tci%\usepackage{fancyhdr}
12 %tci%\usepackage{psfrag}
13
14 %tci%%TCIDATA{OutputFilter=Latex.dll}
15 %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16 %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17 %tci%%TCIDATA{Language=American English}
18
19 %tci%\fancyhead{}
20 %tci%\fancyhead[LO]{\slshape \rightmark}
21 %tci%\fancyhead[RE]{\slshape \leftmark}
22 %tci%\fancyhead[RO,LE]{\thepage}
23 %tci%\fancyfoot[CO,CE]{\today}
24 %tci%\fancyfoot[RO,LE]{ }
25 %tci%\renewcommand{\headrulewidth}{0.4pt}
26 %tci%\renewcommand{\footrulewidth}{0.4pt}
27 %tci%\setcounter{secnumdepth}{3}
28 %tci%\input{tcilatex}
29
30 %tci%\begin{document}
31
32 %tci%\tableofcontents
33
34
35 % Section: Overview
36
37 This document provides the reader with the information necessary to
38 carry out numerical experiments using MITgcm. It gives a comprehensive
39 description of the continuous equations on which the model is based, the
40 numerical algorithms the model employs and a description of the associated
41 program code. Along with the hydrodynamical kernel, physical and
42 biogeochemical parameterizations of key atmospheric and oceanic processes
43 are available. A number of examples illustrating the use of the model in
44 both process and general circulation studies of the atmosphere and ocean are
45 also presented.
46
47 \section{Introduction}
48 \begin{rawhtml}
49 <!-- CMIREDIR:innovations: -->
50 \end{rawhtml}
51
52
53 MITgcm has a number of novel aspects:
54
55 \begin{itemize}
56 \item it can be used to study both atmospheric and oceanic phenomena; one
57 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
58 models - see fig \ref{fig:onemodel}
59
60 %% CNHbegin
61 \input{s_overview/text/one_model_figure}
62 %% CNHend
63
64 \item it has a non-hydrostatic capability and so can be used to study both
65 small-scale and large scale processes - see fig \ref{fig:all-scales}
66
67 %% CNHbegin
68 \input{s_overview/text/all_scales_figure}
69 %% CNHend
70
71 \item finite volume techniques are employed yielding an intuitive
72 discretization and support for the treatment of irregular geometries using
73 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
74
75 %% CNHbegin
76 \input{s_overview/text/fvol_figure}
77 %% CNHend
78
79 \item tangent linear and adjoint counterparts are automatically maintained
80 along with the forward model, permitting sensitivity and optimization
81 studies.
82
83 \item the model is developed to perform efficiently on a wide variety of
84 computational platforms.
85 \end{itemize}
86
87
88 Key publications reporting on and charting the development of the model are
89 \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}
90 (an overview on the model formulation can also be found in \cite{adcroft:04c}):
91
92 \begin{verbatim}
93 Hill, C. and J. Marshall, (1995)
94 Application of a Parallel Navier-Stokes Model to Ocean Circulation in
95 Parallel Computational Fluid Dynamics
96 In Proceedings of Parallel Computational Fluid Dynamics: Implementations
97 and Results Using Parallel Computers, 545-552.
98 Elsevier Science B.V.: New York
99
100 Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
101 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
102 J. Geophysical Res., 102(C3), 5733-5752.
103
104 Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
105 A finite-volume, incompressible Navier Stokes model for studies of the ocean
106 on parallel computers,
107 J. Geophysical Res., 102(C3), 5753-5766.
108
109 Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
110 Representation of topography by shaved cells in a height coordinate ocean
111 model
112 Mon Wea Rev, vol 125, 2293-2315
113
114 Marshall, J., Jones, H. and C. Hill, (1998)
115 Efficient ocean modeling using non-hydrostatic algorithms
116 Journal of Marine Systems, 18, 115-134
117
118 Adcroft, A., Hill C. and J. Marshall: (1999)
119 A new treatment of the Coriolis terms in C-grid models at both high and low
120 resolutions,
121 Mon. Wea. Rev. Vol 127, pages 1928-1936
122
123 Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
124 A Strategy for Terascale Climate Modeling.
125 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
126 in Meteorology, pages 406-425
127 World Scientific Publishing Co: UK
128
129 Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
130 Construction of the adjoint MIT ocean general circulation model and
131 application to Atlantic heat transport variability
132 J. Geophysical Res., 104(C12), 29,529-29,547.
133
134 \end{verbatim}
135
136 We begin by briefly showing some of the results of the model in action to
137 give a feel for the wide range of problems that can be addressed using it.
138
139 \section{Illustrations of the model in action}
140
141 MITgcm has been designed and used to model a wide range of phenomena,
142 from convection on the scale of meters in the ocean to the global pattern of
143 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
144 kinds of problems the model has been used to study, we briefly describe some
145 of them here. A more detailed description of the underlying formulation,
146 numerical algorithm and implementation that lie behind these calculations is
147 given later. Indeed many of the illustrative examples shown below can be
148 easily reproduced: simply download the model (the minimum you need is a PC
149 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
150 described in detail in the documentation.
151
152 \subsection{Global atmosphere: `Held-Suarez' benchmark}
153 \begin{rawhtml}
154 <!-- CMIREDIR:atmospheric_example: -->
155 \end{rawhtml}
156
157
158
159 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
160 both atmospheric and oceanographic flows at both small and large scales.
161
162 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
163 temperature field obtained using the atmospheric isomorph of MITgcm run at
164 $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
165 (blue) and warm air along an equatorial band (red). Fully developed
166 baroclinic eddies spawned in the northern hemisphere storm track are
167 evident. There are no mountains or land-sea contrast in this calculation,
168 but you can easily put them in. The model is driven by relaxation to a
169 radiative-convective equilibrium profile, following the description set out
170 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
171 there are no mountains or land-sea contrast.
172
173 %% CNHbegin
174 \input{s_overview/text/cubic_eddies_figure}
175 %% CNHend
176
177 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
178 globe permitting a uniform griding and obviated the need to Fourier filter.
179 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
180 grid, of which the cubed sphere is just one of many choices.
181
182 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
183 wind from a 20-level configuration of
184 the model. It compares favorable with more conventional spatial
185 discretization approaches. The two plots show the field calculated using the
186 cube-sphere grid and the flow calculated using a regular, spherical polar
187 latitude-longitude grid. Both grids are supported within the model.
188
189 %% CNHbegin
190 \input{s_overview/text/hs_zave_u_figure}
191 %% CNHend
192
193 \subsection{Ocean gyres}
194 \begin{rawhtml}
195 <!-- CMIREDIR:oceanic_example: -->
196 \end{rawhtml}
197 \begin{rawhtml}
198 <!-- CMIREDIR:ocean_gyres: -->
199 \end{rawhtml}
200
201 Baroclinic instability is a ubiquitous process in the ocean, as well as the
202 atmosphere. Ocean eddies play an important role in modifying the
203 hydrographic structure and current systems of the oceans. Coarse resolution
204 models of the oceans cannot resolve the eddy field and yield rather broad,
205 diffusive patterns of ocean currents. But if the resolution of our models is
206 increased until the baroclinic instability process is resolved, numerical
207 solutions of a different and much more realistic kind, can be obtained.
208
209 Figure \ref{fig:ocean-gyres} shows the surface temperature and
210 velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$
211 horizontal resolution on a \textit{lat-lon} grid in which the pole has
212 been rotated by $90^{\circ }$ on to the equator (to avoid the
213 converging of meridian in northern latitudes). 21 vertical levels are
214 used in the vertical with a `lopped cell' representation of
215 topography. The development and propagation of anomalously warm and
216 cold eddies can be clearly seen in the Gulf Stream region. The
217 transport of warm water northward by the mean flow of the Gulf Stream
218 is also clearly visible.
219
220 %% CNHbegin
221 \input{s_overview/text/atl6_figure}
222 %% CNHend
223
224
225 \subsection{Global ocean circulation}
226 \begin{rawhtml}
227 <!-- CMIREDIR:global_ocean_circulation: -->
228 \end{rawhtml}
229
230 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean
231 currents at the surface of a $4^{\circ }$ global ocean model run with
232 15 vertical levels. Lopped cells are used to represent topography on a
233 regular \textit{lat-lon} grid extending from $70^{\circ }N$ to
234 $70^{\circ }S$. The model is driven using monthly-mean winds with
235 mixed boundary conditions on temperature and salinity at the surface.
236 The transfer properties of ocean eddies, convection and mixing is
237 parameterized in this model.
238
239 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
240 circulation of the global ocean in Sverdrups.
241
242 %%CNHbegin
243 \input{s_overview/text/global_circ_figure}
244 %%CNHend
245
246 \subsection{Convection and mixing over topography}
247 \begin{rawhtml}
248 <!-- CMIREDIR:mixing_over_topography: -->
249 \end{rawhtml}
250
251
252 Dense plumes generated by localized cooling on the continental shelf of the
253 ocean may be influenced by rotation when the deformation radius is smaller
254 than the width of the cooling region. Rather than gravity plumes, the
255 mechanism for moving dense fluid down the shelf is then through geostrophic
256 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
257 (blue is cold dense fluid, red is
258 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
259 trigger convection by surface cooling. The cold, dense water falls down the
260 slope but is deflected along the slope by rotation. It is found that
261 entrainment in the vertical plane is reduced when rotational control is
262 strong, and replaced by lateral entrainment due to the baroclinic
263 instability of the along-slope current.
264
265 %%CNHbegin
266 \input{s_overview/text/convect_and_topo}
267 %%CNHend
268
269 \subsection{Boundary forced internal waves}
270 \begin{rawhtml}
271 <!-- CMIREDIR:boundary_forced_internal_waves: -->
272 \end{rawhtml}
273
274 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
275 presence of complex geometry makes it an ideal tool to study internal wave
276 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
277 barotropic tidal currents imposed through open boundary conditions.
278
279 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
280 topographic variations on
281 internal wave breaking - the cross-slope velocity is in color, the density
282 contoured. The internal waves are excited by application of open boundary
283 conditions on the left. They propagate to the sloping boundary (represented
284 using MITgcm's finite volume spatial discretization) where they break under
285 nonhydrostatic dynamics.
286
287 %%CNHbegin
288 \input{s_overview/text/boundary_forced_waves}
289 %%CNHend
290
291 \subsection{Parameter sensitivity using the adjoint of MITgcm}
292 \begin{rawhtml}
293 <!-- CMIREDIR:parameter_sensitivity: -->
294 \end{rawhtml}
295
296 Forward and tangent linear counterparts of MITgcm are supported using an
297 `automatic adjoint compiler'. These can be used in parameter sensitivity and
298 data assimilation studies.
299
300 As one example of application of the MITgcm adjoint, Figure
301 \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial
302 \mathcal{H}}$where $J$ is the magnitude of the overturning
303 stream-function shown in figure \ref{fig:large-scale-circ} at
304 $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local
305 air-sea heat flux over a 100 year period. We see that $J$ is sensitive
306 to heat fluxes over the Labrador Sea, one of the important sources of
307 deep water for the thermohaline circulations. This calculation also
308 yields sensitivities to all other model parameters.
309
310 %%CNHbegin
311 \input{s_overview/text/adj_hf_ocean_figure}
312 %%CNHend
313
314 \subsection{Global state estimation of the ocean}
315 \begin{rawhtml}
316 <!-- CMIREDIR:global_state_estimation: -->
317 \end{rawhtml}
318
319
320 An important application of MITgcm is in state estimation of the global
321 ocean circulation. An appropriately defined `cost function', which measures
322 the departure of the model from observations (both remotely sensed and
323 in-situ) over an interval of time, is minimized by adjusting `control
324 parameters' such as air-sea fluxes, the wind field, the initial conditions
325 etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
326 circulation and a Hopf-Muller plot of Equatorial sea-surface height.
327 Both are obtained from assimilation bringing the model in to
328 consistency with altimetric and in-situ observations over the period
329 1992-1997.
330
331 %% CNHbegin
332 \input{s_overview/text/assim_figure}
333 %% CNHend
334
335 \subsection{Ocean biogeochemical cycles}
336 \begin{rawhtml}
337 <!-- CMIREDIR:ocean_biogeo_cycles: -->
338 \end{rawhtml}
339
340 MITgcm is being used to study global biogeochemical cycles in the
341 ocean. For example one can study the effects of interannual changes in
342 meteorological forcing and upper ocean circulation on the fluxes of
343 carbon dioxide and oxygen between the ocean and atmosphere. Figure
344 \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its
345 relation to density outcrops in the southern oceans from a single year
346 of a global, interannually varying simulation. The simulation is run
347 at $1^{\circ}\times1^{\circ}$ resolution telescoping to
348 $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not
349 shown).
350
351 %%CNHbegin
352 \input{s_overview/text/biogeo_figure}
353 %%CNHend
354
355 \subsection{Simulations of laboratory experiments}
356 \begin{rawhtml}
357 <!-- CMIREDIR:classroom_exp: -->
358 \end{rawhtml}
359
360 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
361 laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
362 initially homogeneous tank of water ($1m$ in diameter) is driven from its
363 free surface by a rotating heated disk. The combined action of mechanical
364 and thermal forcing creates a lens of fluid which becomes baroclinically
365 unstable. The stratification and depth of penetration of the lens is
366 arrested by its instability in a process analogous to that which sets the
367 stratification of the ACC.
368
369 %%CNHbegin
370 \input{s_overview/text/lab_figure}
371 %%CNHend
372
373 \section{Continuous equations in `r' coordinates}
374 \begin{rawhtml}
375 <!-- CMIREDIR:z-p_isomorphism: -->
376 \end{rawhtml}
377
378 To render atmosphere and ocean models from one dynamical core we exploit
379 `isomorphisms' between equation sets that govern the evolution of the
380 respective fluids - see figure \ref{fig:isomorphic-equations}.
381 One system of hydrodynamical equations is written down
382 and encoded. The model variables have different interpretations depending on
383 whether the atmosphere or ocean is being studied. Thus, for example, the
384 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
385 modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
386 and height, $z$, if we are modeling the ocean (left hand side of figure
387 \ref{fig:isomorphic-equations}).
388
389 %%CNHbegin
390 \input{s_overview/text/zandpcoord_figure.tex}
391 %%CNHend
392
393 The state of the fluid at any time is characterized by the distribution of
394 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
395 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
396 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
397 of these fields, obtained by applying the laws of classical mechanics and
398 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
399 a generic vertical coordinate, $r$, so that the appropriate
400 kinematic boundary conditions can be applied isomorphically
401 see figure \ref{fig:zandp-vert-coord}.
402
403 %%CNHbegin
404 \input{s_overview/text/vertcoord_figure.tex}
405 %%CNHend
406
407 \begin{equation}
408 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
409 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
410 \text{ horizontal mtm} \label{eq:horizontal_mtm}
411 \end{equation}
412
413 \begin{equation}
414 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
415 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
416 vertical mtm} \label{eq:vertical_mtm}
417 \end{equation}
418
419 \begin{equation}
420 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
421 \partial r}=0\text{ continuity} \label{eq:continuity}
422 \end{equation}
423
424 \begin{equation}
425 b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
426 \end{equation}
427
428 \begin{equation}
429 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
430 \label{eq:potential_temperature}
431 \end{equation}
432
433 \begin{equation}
434 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
435 \label{eq:humidity_salt}
436 \end{equation}
437
438 Here:
439
440 \begin{equation*}
441 r\text{ is the vertical coordinate}
442 \end{equation*}
443
444 \begin{equation*}
445 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
446 is the total derivative}
447 \end{equation*}
448
449 \begin{equation*}
450 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
451 \text{ is the `grad' operator}
452 \end{equation*}
453 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
454 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
455 is a unit vector in the vertical
456
457 \begin{equation*}
458 t\text{ is time}
459 \end{equation*}
460
461 \begin{equation*}
462 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
463 velocity}
464 \end{equation*}
465
466 \begin{equation*}
467 \phi \text{ is the `pressure'/`geopotential'}
468 \end{equation*}
469
470 \begin{equation*}
471 \vec{\Omega}\text{ is the Earth's rotation}
472 \end{equation*}
473
474 \begin{equation*}
475 b\text{ is the `buoyancy'}
476 \end{equation*}
477
478 \begin{equation*}
479 \theta \text{ is potential temperature}
480 \end{equation*}
481
482 \begin{equation*}
483 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
484 \end{equation*}
485
486 \begin{equation*}
487 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
488 \mathbf{v}}
489 \end{equation*}
490
491 \begin{equation*}
492 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
493 \end{equation*}
494
495 \begin{equation*}
496 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
497 \end{equation*}
498
499 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
500 `physics' and forcing packages for atmosphere and ocean. These are described
501 in later chapters.
502
503 \subsection{Kinematic Boundary conditions}
504
505 \subsubsection{vertical}
506
507 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
508
509 \begin{equation}
510 \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
511 \label{eq:fixedbc}
512 \end{equation}
513
514 \begin{equation}
515 \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
516 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
517 \end{equation}
518
519 Here
520
521 \begin{equation*}
522 R_{moving}=R_{o}+\eta
523 \end{equation*}
524 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
525 whether we are in the atmosphere or ocean) of the `moving surface' in the
526 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
527 of motion.
528
529 \subsubsection{horizontal}
530
531 \begin{equation}
532 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
533 \end{equation}
534 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
535
536 \subsection{Atmosphere}
537
538 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
539
540 \begin{equation}
541 r=p\text{ is the pressure} \label{eq:atmos-r}
542 \end{equation}
543
544 \begin{equation}
545 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
546 coordinates} \label{eq:atmos-omega}
547 \end{equation}
548
549 \begin{equation}
550 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
551 \end{equation}
552
553 \begin{equation}
554 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
555 \label{eq:atmos-b}
556 \end{equation}
557
558 \begin{equation}
559 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
560 \label{eq:atmos-theta}
561 \end{equation}
562
563 \begin{equation}
564 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
565 \end{equation}
566 where
567
568 \begin{equation*}
569 T\text{ is absolute temperature}
570 \end{equation*}
571 \begin{equation*}
572 p\text{ is the pressure}
573 \end{equation*}
574 \begin{eqnarray*}
575 &&z\text{ is the height of the pressure surface} \\
576 &&g\text{ is the acceleration due to gravity}
577 \end{eqnarray*}
578
579 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
580 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
581 \begin{equation}
582 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
583 \end{equation}
584 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
585 constant and $c_{p}$ the specific heat of air at constant pressure.
586
587 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
588
589 \begin{equation*}
590 R_{fixed}=p_{top}=0
591 \end{equation*}
592 In a resting atmosphere the elevation of the mountains at the bottom is
593 given by
594 \begin{equation*}
595 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
596 \end{equation*}
597 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
598 atmosphere.
599
600 The boundary conditions at top and bottom are given by:
601
602 \begin{eqnarray}
603 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
604 \label{eq:fixed-bc-atmos} \\
605 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
606 atmosphere)} \label{eq:moving-bc-atmos}
607 \end{eqnarray}
608
609 Then the (hydrostatic form of) equations
610 (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
611 set of atmospheric equations which, for convenience, are written out
612 in $p$ coordinates in Appendix Atmosphere - see
613 eqs(\ref{eq:atmos-prime}).
614
615 \subsection{Ocean}
616
617 In the ocean we interpret:
618 \begin{eqnarray}
619 r &=&z\text{ is the height} \label{eq:ocean-z} \\
620 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
621 \label{eq:ocean-w} \\
622 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
623 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
624 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
625 \end{eqnarray}
626 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
627 acceleration due to gravity.\noindent
628
629 In the above
630
631 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
632
633 The surface of the ocean is given by: $R_{moving}=\eta $
634
635 The position of the resting free surface of the ocean is given by $
636 R_{o}=Z_{o}=0$.
637
638 Boundary conditions are:
639
640 \begin{eqnarray}
641 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
642 \\
643 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
644 \label{eq:moving-bc-ocean}}
645 \end{eqnarray}
646 where $\eta $ is the elevation of the free surface.
647
648 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
649 of oceanic equations
650 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
651 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
652
653 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
654 Non-hydrostatic forms}
655 \label{sec:all_hydrostatic_forms}
656 \begin{rawhtml}
657 <!-- CMIREDIR:non_hydrostatic: -->
658 \end{rawhtml}
659
660
661 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
662
663 \begin{equation}
664 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
665 \label{eq:phi-split}
666 \end{equation}
667 %and write eq(\ref{eq:incompressible}) in the form:
668 % ^- this eq is missing (jmc) ; replaced with:
669 and write eq( \ref{eq:horizontal_mtm}) in the form:
670
671 \begin{equation}
672 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
673 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
674 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
675 \end{equation}
676
677 \begin{equation}
678 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
679 \end{equation}
680
681 \begin{equation}
682 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
683 \partial r}=G_{\dot{r}} \label{eq:mom-w}
684 \end{equation}
685 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
686
687 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
688 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
689 terms in the momentum equations. In spherical coordinates they take the form
690 \footnote{
691 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
692 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
693 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
694 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
695 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
696 discussion:
697
698 \begin{equation}
699 \left.
700 \begin{tabular}{l}
701 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
702 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
703 \\
704 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
705 \\
706 $+\mathcal{F}_{u}$
707 \end{tabular}
708 \ \right\} \left\{
709 \begin{tabular}{l}
710 \textit{advection} \\
711 \textit{metric} \\
712 \textit{Coriolis} \\
713 \textit{\ Forcing/Dissipation}
714 \end{tabular}
715 \ \right. \qquad \label{eq:gu-speherical}
716 \end{equation}
717
718 \begin{equation}
719 \left.
720 \begin{tabular}{l}
721 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
722 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
723 $ \\
724 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
725 $+\mathcal{F}_{v}$
726 \end{tabular}
727 \ \right\} \left\{
728 \begin{tabular}{l}
729 \textit{advection} \\
730 \textit{metric} \\
731 \textit{Coriolis} \\
732 \textit{\ Forcing/Dissipation}
733 \end{tabular}
734 \ \right. \qquad \label{eq:gv-spherical}
735 \end{equation}
736 \qquad \qquad \qquad \qquad \qquad
737
738 \begin{equation}
739 \left.
740 \begin{tabular}{l}
741 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
742 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
743 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
744 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
745 \end{tabular}
746 \ \right\} \left\{
747 \begin{tabular}{l}
748 \textit{advection} \\
749 \textit{metric} \\
750 \textit{Coriolis} \\
751 \textit{\ Forcing/Dissipation}
752 \end{tabular}
753 \ \right. \label{eq:gw-spherical}
754 \end{equation}
755 \qquad \qquad \qquad \qquad \qquad
756
757 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
758 ' is latitude.
759
760 Grad and div operators in spherical coordinates are defined in appendix
761 OPERATORS.
762
763 %%CNHbegin
764 \input{s_overview/text/sphere_coord_figure.tex}
765 %%CNHend
766
767 \subsubsection{Shallow atmosphere approximation}
768
769 Most models are based on the `hydrostatic primitive equations' (HPE's)
770 in which the vertical momentum equation is reduced to a statement of
771 hydrostatic balance and the `traditional approximation' is made in
772 which the Coriolis force is treated approximately and the shallow
773 atmosphere approximation is made. MITgcm need not make the
774 `traditional approximation'. To be able to support consistent
775 non-hydrostatic forms the shallow atmosphere approximation can be
776 relaxed - when dividing through by $ r $ in, for example,
777 (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
778 the earth.
779
780 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
781 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
782
783 These are discussed at length in Marshall et al (1997a).
784
785 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
786 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
787 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
788 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
789 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
790 computed at all other levels by integration of the hydrostatic relation, eq(
791 \ref{eq:hydrostatic}).
792
793 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
794 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
795 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
796 contribution to the pressure field: only the terms underlined twice in Eqs. (
797 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
798 and, simultaneously, the shallow atmosphere approximation is relaxed. In
799 \textbf{QH}\ \textit{all} the metric terms are retained and the full
800 variation of the radial position of a particle monitored. The \textbf{QH}\
801 vertical momentum equation (\ref{eq:mom-w}) becomes:
802
803 \begin{equation*}
804 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
805 \end{equation*}
806 making a small correction to the hydrostatic pressure.
807
808 \textbf{QH} has good energetic credentials - they are the same as for
809 \textbf{HPE}. Importantly, however, it has the same angular momentum
810 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
811 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
812
813 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
814
815 MITgcm presently supports a full non-hydrostatic ocean isomorph, but
816 only a quasi-non-hydrostatic atmospheric isomorph.
817
818 \paragraph{Non-hydrostatic Ocean}
819
820 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
821 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
822 three dimensional elliptic equation must be solved subject to Neumann
823 boundary conditions (see below). It is important to note that use of the
824 full \textbf{NH} does not admit any new `fast' waves in to the system - the
825 incompressible condition eq(\ref{eq:continuity}) has already filtered out
826 acoustic modes. It does, however, ensure that the gravity waves are treated
827 accurately with an exact dispersion relation. The \textbf{NH} set has a
828 complete angular momentum principle and consistent energetics - see White
829 and Bromley, 1995; Marshall et.al.\ 1997a.
830
831 \paragraph{Quasi-nonhydrostatic Atmosphere}
832
833 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
834 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
835 (but only here) by:
836
837 \begin{equation}
838 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
839 \end{equation}
840 where $p_{hy}$ is the hydrostatic pressure.
841
842 \subsubsection{Summary of equation sets supported by model}
843
844 \paragraph{Atmosphere}
845
846 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
847 compressible non-Boussinesq equations in $p-$coordinates are supported.
848
849 \subparagraph{Hydrostatic and quasi-hydrostatic}
850
851 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
852 - see eq(\ref{eq:atmos-prime}).
853
854 \subparagraph{Quasi-nonhydrostatic}
855
856 A quasi-nonhydrostatic form is also supported.
857
858 \paragraph{Ocean}
859
860 \subparagraph{Hydrostatic and quasi-hydrostatic}
861
862 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
863 equations in $z-$coordinates are supported.
864
865 \subparagraph{Non-hydrostatic}
866
867 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
868 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
869 {eq:ocean-salt}).
870
871 \subsection{Solution strategy}
872
873 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
874 NH} models is summarized in Figure \ref{fig:solution-strategy}.
875 Under all dynamics, a 2-d elliptic equation is
876 first solved to find the surface pressure and the hydrostatic pressure at
877 any level computed from the weight of fluid above. Under \textbf{HPE} and
878 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
879 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
880 3-d elliptic equation must be solved for the non-hydrostatic pressure before
881 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
882 stepping forward the vertical momentum equation.
883
884 %%CNHbegin
885 \input{s_overview/text/solution_strategy_figure.tex}
886 %%CNHend
887
888 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
889 course, some complication that goes with the inclusion of $\cos \varphi \ $
890 Coriolis terms and the relaxation of the shallow atmosphere approximation.
891 But this leads to negligible increase in computation. In \textbf{NH}, in
892 contrast, one additional elliptic equation - a three-dimensional one - must
893 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
894 essentially negligible in the hydrostatic limit (see detailed discussion in
895 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
896 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
897
898 \subsection{Finding the pressure field}
899 \label{sec:finding_the_pressure_field}
900
901 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
902 pressure field must be obtained diagnostically. We proceed, as before, by
903 dividing the total (pressure/geo) potential in to three parts, a surface
904 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
905 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
906 writing the momentum equation as in (\ref{eq:mom-h}).
907
908 \subsubsection{Hydrostatic pressure}
909
910 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
911 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
912
913 \begin{equation*}
914 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
915 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
916 \end{equation*}
917 and so
918
919 \begin{equation}
920 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
921 \end{equation}
922
923 The model can be easily modified to accommodate a loading term (e.g
924 atmospheric pressure pushing down on the ocean's surface) by setting:
925
926 \begin{equation}
927 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
928 \end{equation}
929
930 \subsubsection{Surface pressure}
931
932 The surface pressure equation can be obtained by integrating continuity,
933 (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
934
935 \begin{equation*}
936 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
937 }_{h}+\partial _{r}\dot{r}\right) dr=0
938 \end{equation*}
939
940 Thus:
941
942 \begin{equation*}
943 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
944 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
945 _{h}dr=0
946 \end{equation*}
947 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
948 r $. The above can be rearranged to yield, using Leibnitz's theorem:
949
950 \begin{equation}
951 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
952 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
953 \label{eq:free-surface}
954 \end{equation}
955 where we have incorporated a source term.
956
957 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
958 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
959 be written
960 \begin{equation}
961 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
962 \label{eq:phi-surf}
963 \end{equation}
964 where $b_{s}$ is the buoyancy at the surface.
965
966 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
967 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
968 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
969 surface' and `rigid lid' approaches are available.
970
971 \subsubsection{Non-hydrostatic pressure}
972
973 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
974 $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
975 (\ref{eq:continuity}), we deduce that:
976
977 \begin{equation}
978 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
979 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
980 \vec{\mathbf{F}} \label{eq:3d-invert}
981 \end{equation}
982
983 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
984 subject to appropriate choice of boundary conditions. This method is usually
985 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
986 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
987 the 3-d problem does not need to be solved.
988
989 \paragraph{Boundary Conditions}
990
991 We apply the condition of no normal flow through all solid boundaries - the
992 coasts (in the ocean) and the bottom:
993
994 \begin{equation}
995 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
996 \end{equation}
997 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
998 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
999 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
1000 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
1001 tangential component of velocity, $v_{T}$, at all solid boundaries,
1002 depending on the form chosen for the dissipative terms in the momentum
1003 equations - see below.
1004
1005 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1006
1007 \begin{equation}
1008 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
1009 \label{eq:inhom-neumann-nh}
1010 \end{equation}
1011 where
1012
1013 \begin{equation*}
1014 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
1015 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
1016 \end{equation*}
1017 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
1018 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
1019 exploit classical 3D potential theory and, by introducing an appropriately
1020 chosen $\delta $-function sheet of `source-charge', replace the
1021 inhomogeneous boundary condition on pressure by a homogeneous one. The
1022 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
1023 \vec{\mathbf{F}}.$ By simultaneously setting $
1024 \begin{array}{l}
1025 \widehat{n}.\vec{\mathbf{F}}
1026 \end{array}
1027 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
1028 self-consistent but simpler homogenized Elliptic problem is obtained:
1029
1030 \begin{equation*}
1031 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
1032 \end{equation*}
1033 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
1034 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
1035 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
1036
1037 \begin{equation}
1038 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
1039 \end{equation}
1040
1041 If the flow is `close' to hydrostatic balance then the 3-d inversion
1042 converges rapidly because $\phi _{nh}\ $is then only a small correction to
1043 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1044
1045 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1046 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1047
1048 \subsection{Forcing/dissipation}
1049
1050 \subsubsection{Forcing}
1051
1052 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1053 `physics packages' and forcing packages. These are described later on.
1054
1055 \subsubsection{Dissipation}
1056
1057 \paragraph{Momentum}
1058
1059 Many forms of momentum dissipation are available in the model. Laplacian and
1060 biharmonic frictions are commonly used:
1061
1062 \begin{equation}
1063 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1064 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1065 \end{equation}
1066 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1067 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1068 friction. These coefficients are the same for all velocity components.
1069
1070 \paragraph{Tracers}
1071
1072 The mixing terms for the temperature and salinity equations have a similar
1073 form to that of momentum except that the diffusion tensor can be
1074 non-diagonal and have varying coefficients.
1075 \begin{equation}
1076 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1077 _{h}^{4}(T,S) \label{eq:diffusion}
1078 \end{equation}
1079 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1080 horizontal coefficient for biharmonic diffusion. In the simplest case where
1081 the subgrid-scale fluxes of heat and salt are parameterized with constant
1082 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1083 reduces to a diagonal matrix with constant coefficients:
1084
1085 \begin{equation}
1086 \qquad \qquad \qquad \qquad K=\left(
1087 \begin{array}{ccc}
1088 K_{h} & 0 & 0 \\
1089 0 & K_{h} & 0 \\
1090 0 & 0 & K_{v}
1091 \end{array}
1092 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1093 \end{equation}
1094 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1095 coefficients. These coefficients are the same for all tracers (temperature,
1096 salinity ... ).
1097
1098 \subsection{Vector invariant form}
1099
1100 For some purposes it is advantageous to write momentum advection in
1101 eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
1102 (so-called) `vector invariant' form:
1103
1104 \begin{equation}
1105 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1106 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1107 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1108 \label{eq:vi-identity}
1109 \end{equation}
1110 This permits alternative numerical treatments of the non-linear terms based
1111 on their representation as a vorticity flux. Because gradients of coordinate
1112 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1113 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1114 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1115 about the geometry is contained in the areas and lengths of the volumes used
1116 to discretize the model.
1117
1118 \subsection{Adjoint}
1119
1120 Tangent linear and adjoint counterparts of the forward model are described
1121 in Chapter 5.
1122
1123 \section{Appendix ATMOSPHERE}
1124
1125 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1126 coordinates}
1127
1128 \label{sect-hpe-p}
1129
1130 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1131 \begin{eqnarray}
1132 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1133 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1134 \label{eq:atmos-mom} \\
1135 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1136 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1137 \partial p} &=&0 \label{eq:atmos-cont} \\
1138 p\alpha &=&RT \label{eq:atmos-eos} \\
1139 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1140 \end{eqnarray}
1141 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1142 surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t}
1143 +\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$
1144 is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter,
1145 $\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume,
1146 $\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate.
1147 Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal
1148 energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass
1149 and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1150
1151 It is convenient to cast the heat equation in terms of potential temperature
1152 $\theta $ so that it looks more like a generic conservation law.
1153 Differentiating (\ref{eq:atmos-eos}) we get:
1154 \begin{equation*}
1155 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1156 \end{equation*}
1157 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1158 c_{p}=c_{v}+R$, gives:
1159 \begin{equation}
1160 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1161 \label{eq-p-heat-interim}
1162 \end{equation}
1163 Potential temperature is defined:
1164 \begin{equation}
1165 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1166 \end{equation}
1167 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1168 we will make use of the Exner function $\Pi (p)$ which defined by:
1169 \begin{equation}
1170 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1171 \end{equation}
1172 The following relations will be useful and are easily expressed in terms of
1173 the Exner function:
1174 \begin{equation*}
1175 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1176 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1177 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1178 \frac{Dp}{Dt}
1179 \end{equation*}
1180 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1181
1182 The heat equation is obtained by noting that
1183 \begin{equation*}
1184 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1185 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1186 \end{equation*}
1187 and on substituting into (\ref{eq-p-heat-interim}) gives:
1188 \begin{equation}
1189 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1190 \label{eq:potential-temperature-equation}
1191 \end{equation}
1192 which is in conservative form.
1193
1194 For convenience in the model we prefer to step forward (\ref
1195 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1196
1197 \subsubsection{Boundary conditions}
1198
1199 The upper and lower boundary conditions are :
1200 \begin{eqnarray}
1201 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1202 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1203 \label{eq:boundary-condition-atmosphere}
1204 \end{eqnarray}
1205 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1206 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1207 surface ($\phi $ is imposed and $\omega \neq 0$).
1208
1209 \subsubsection{Splitting the geo-potential}
1210 \label{sec:hpe-p-geo-potential-split}
1211
1212 For the purposes of initialization and reducing round-off errors, the model
1213 deals with perturbations from reference (or ``standard'') profiles. For
1214 example, the hydrostatic geopotential associated with the resting atmosphere
1215 is not dynamically relevant and can therefore be subtracted from the
1216 equations. The equations written in terms of perturbations are obtained by
1217 substituting the following definitions into the previous model equations:
1218 \begin{eqnarray}
1219 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1220 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1221 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1222 \end{eqnarray}
1223 The reference state (indicated by subscript ``0'') corresponds to
1224 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1225 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1226 _{o}(p_{o})=g~Z_{topo}$, defined:
1227 \begin{eqnarray*}
1228 \theta _{o}(p) &=&f^{n}(p) \\
1229 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1230 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1231 \end{eqnarray*}
1232 %\begin{eqnarray*}
1233 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1234 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1235 %\end{eqnarray*}
1236
1237 The final form of the HPE's in p coordinates is then:
1238 \begin{eqnarray}
1239 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1240 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
1241 \label{eq:atmos-prime} \\
1242 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1243 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1244 \partial p} &=&0 \\
1245 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1246 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1247 \end{eqnarray}
1248
1249 \section{Appendix OCEAN}
1250
1251 \subsection{Equations of motion for the ocean}
1252
1253 We review here the method by which the standard (Boussinesq, incompressible)
1254 HPE's for the ocean written in z-coordinates are obtained. The
1255 non-Boussinesq equations for oceanic motion are:
1256 \begin{eqnarray}
1257 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1258 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1259 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1260 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1261 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1262 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1263 \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1264 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1265 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1266 \label{eq:non-boussinesq}
1267 \end{eqnarray}
1268 These equations permit acoustics modes, inertia-gravity waves,
1269 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1270 mode. As written, they cannot be integrated forward consistently - if we
1271 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1272 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1273 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1274 therefore necessary to manipulate the system as follows. Differentiating the
1275 EOS (equation of state) gives:
1276
1277 \begin{equation}
1278 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1279 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1280 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1281 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1282 \end{equation}
1283
1284 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
1285 the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
1286 \ref{eq-zns-cont} gives:
1287 \begin{equation}
1288 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1289 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1290 \end{equation}
1291 where we have used an approximation sign to indicate that we have assumed
1292 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1293 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1294 can be explicitly integrated forward:
1295 \begin{eqnarray}
1296 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1297 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1298 \label{eq-cns-hmom} \\
1299 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1300 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1301 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1302 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1303 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1304 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1305 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1306 \end{eqnarray}
1307
1308 \subsubsection{Compressible z-coordinate equations}
1309
1310 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1311 wherever it appears in a product (ie. non-linear term) - this is the
1312 `Boussinesq assumption'. The only term that then retains the full variation
1313 in $\rho $ is the gravitational acceleration:
1314 \begin{eqnarray}
1315 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1316 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1317 \label{eq-zcb-hmom} \\
1318 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1319 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1320 \label{eq-zcb-hydro} \\
1321 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1322 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1323 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1324 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1325 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1326 \end{eqnarray}
1327 These equations still retain acoustic modes. But, because the
1328 ``compressible'' terms are linearized, the pressure equation \ref
1329 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1330 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1331 These are the \emph{truly} compressible Boussinesq equations. Note that the
1332 EOS must have the same pressure dependency as the linearized pressure term,
1333 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1334 c_{s}^{2}}$, for consistency.
1335
1336 \subsubsection{`Anelastic' z-coordinate equations}
1337
1338 The anelastic approximation filters the acoustic mode by removing the
1339 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1340 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1341 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1342 continuity and EOS. A better solution is to change the dependency on
1343 pressure in the EOS by splitting the pressure into a reference function of
1344 height and a perturbation:
1345 \begin{equation*}
1346 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1347 \end{equation*}
1348 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1349 differentiating the EOS, the continuity equation then becomes:
1350 \begin{equation*}
1351 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1352 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1353 \frac{\partial w}{\partial z}=0
1354 \end{equation*}
1355 If the time- and space-scales of the motions of interest are longer than
1356 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1357 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1358 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1359 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1360 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1361 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1362 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1363 anelastic continuity equation:
1364 \begin{equation}
1365 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1366 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1367 \end{equation}
1368 A slightly different route leads to the quasi-Boussinesq continuity equation
1369 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1370 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1371 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1372 \begin{equation}
1373 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1374 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1375 \end{equation}
1376 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1377 equation if:
1378 \begin{equation}
1379 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1380 \end{equation}
1381 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1382 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1383 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1384 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1385 then:
1386 \begin{eqnarray}
1387 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1388 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1389 \label{eq-zab-hmom} \\
1390 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1391 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1392 \label{eq-zab-hydro} \\
1393 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1394 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1395 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1396 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1397 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1398 \end{eqnarray}
1399
1400 \subsubsection{Incompressible z-coordinate equations}
1401
1402 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1403 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1404 yield the ``truly'' incompressible Boussinesq equations:
1405 \begin{eqnarray}
1406 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1407 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1408 \label{eq-ztb-hmom} \\
1409 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1410 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1411 \label{eq-ztb-hydro} \\
1412 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1413 &=&0 \label{eq-ztb-cont} \\
1414 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1415 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1416 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1417 \end{eqnarray}
1418 where $\rho _{c}$ is a constant reference density of water.
1419
1420 \subsubsection{Compressible non-divergent equations}
1421
1422 The above ``incompressible'' equations are incompressible in both the flow
1423 and the density. In many oceanic applications, however, it is important to
1424 retain compressibility effects in the density. To do this we must split the
1425 density thus:
1426 \begin{equation*}
1427 \rho =\rho _{o}+\rho ^{\prime }
1428 \end{equation*}
1429 We then assert that variations with depth of $\rho _{o}$ are unimportant
1430 while the compressible effects in $\rho ^{\prime }$ are:
1431 \begin{equation*}
1432 \rho _{o}=\rho _{c}
1433 \end{equation*}
1434 \begin{equation*}
1435 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1436 \end{equation*}
1437 This then yields what we can call the semi-compressible Boussinesq
1438 equations:
1439 \begin{eqnarray}
1440 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1441 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1442 \mathcal{F}}} \label{eq:ocean-mom} \\
1443 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1444 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1445 \label{eq:ocean-wmom} \\
1446 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1447 &=&0 \label{eq:ocean-cont} \\
1448 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1449 \\
1450 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1451 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1452 \end{eqnarray}
1453 Note that the hydrostatic pressure of the resting fluid, including that
1454 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1455 dynamics.
1456
1457 Though necessary, the assumptions that go into these equations are messy
1458 since we essentially assume a different EOS for the reference density and
1459 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1460 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1461 community and referred to as the primitive equations (HPE).
1462
1463 \section{Appendix:OPERATORS}
1464
1465 \subsection{Coordinate systems}
1466
1467 \subsubsection{Spherical coordinates}
1468
1469 In spherical coordinates, the velocity components in the zonal, meridional
1470 and vertical direction respectively, are given by (see Fig.2) :
1471
1472 \begin{equation*}
1473 u=r\cos \varphi \frac{D\lambda }{Dt}
1474 \end{equation*}
1475
1476 \begin{equation*}
1477 v=r\frac{D\varphi }{Dt}
1478 \end{equation*}
1479
1480 \begin{equation*}
1481 \dot{r}=\frac{Dr}{Dt}
1482 \end{equation*}
1483
1484 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1485 distance of the particle from the center of the earth, $\Omega $ is the
1486 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1487
1488 The `grad' ($\nabla $) and `div' ($\nabla\cdot$) operators are defined by, in
1489 spherical coordinates:
1490
1491 \begin{equation*}
1492 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1493 ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1494 \right)
1495 \end{equation*}
1496
1497 \begin{equation*}
1498 \nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1499 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1500 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1501 \end{equation*}
1502
1503 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22