/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Thu Oct 25 15:24:01 2001 UTC (23 years, 8 months ago) by cnh
Branch: MAIN
Changes since 1.7: +49 -49 lines
File MIME type: application/x-tex
Editing

1 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
2 % $Name: $
3
4 %tci%\documentclass[12pt]{book}
5 %tci%\usepackage{amsmath}
6 %tci%\usepackage{html}
7 %tci%\usepackage{epsfig}
8 %tci%\usepackage{graphics,subfigure}
9 %tci%\usepackage{array}
10 %tci%\usepackage{multirow}
11 %tci%\usepackage{fancyhdr}
12 %tci%\usepackage{psfrag}
13
14 %tci%%TCIDATA{OutputFilter=Latex.dll}
15 %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16 %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17 %tci%%TCIDATA{Language=American English}
18
19 %tci%\fancyhead{}
20 %tci%\fancyhead[LO]{\slshape \rightmark}
21 %tci%\fancyhead[RE]{\slshape \leftmark}
22 %tci%\fancyhead[RO,LE]{\thepage}
23 %tci%\fancyfoot[CO,CE]{\today}
24 %tci%\fancyfoot[RO,LE]{ }
25 %tci%\renewcommand{\headrulewidth}{0.4pt}
26 %tci%\renewcommand{\footrulewidth}{0.4pt}
27 %tci%\setcounter{secnumdepth}{3}
28 %tci%\input{tcilatex}
29
30 %tci%\begin{document}
31
32 %tci%\tableofcontents
33
34
35 % Section: Overview
36
37 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
38 % $Name: $
39
40 \section{Introduction}
41
42 This documentation provides the reader with the information necessary to
43 carry out numerical experiments using MITgcm. It gives a comprehensive
44 description of the continuous equations on which the model is based, the
45 numerical algorithms the model employs and a description of the associated
46 program code. Along with the hydrodynamical kernel, physical and
47 biogeochemical parameterizations of key atmospheric and oceanic processes
48 are available. A number of examples illustrating the use of the model in
49 both process and general circulation studies of the atmosphere and ocean are
50 also presented.
51
52 MITgcm has a number of novel aspects:
53
54 \begin{itemize}
55 \item it can be used to study both atmospheric and oceanic phenomena; one
56 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57 models - see fig \ref{fig:onemodel}
58
59 %% CNHbegin
60 \input{part1/one_model_figure}
61 %% CNHend
62
63 \item it has a non-hydrostatic capability and so can be used to study both
64 small-scale and large scale processes - see fig \ref{fig:all-scales}
65
66 %% CNHbegin
67 \input{part1/all_scales_figure}
68 %% CNHend
69
70 \item finite volume techniques are employed yielding an intuitive
71 discretization and support for the treatment of irregular geometries using
72 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
73
74 %% CNHbegin
75 \input{part1/fvol_figure}
76 %% CNHend
77
78 \item tangent linear and adjoint counterparts are automatically maintained
79 along with the forward model, permitting sensitivity and optimization
80 studies.
81
82 \item the model is developed to perform efficiently on a wide variety of
83 computational platforms.
84 \end{itemize}
85
86 Key publications reporting on and charting the development of the model are
87 listed in an Appendix.
88
89 We begin by briefly showing some of the results of the model in action to
90 give a feel for the wide range of problems that can be addressed using it.
91
92 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
93 % $Name: $
94
95 \section{Illustrations of the model in action}
96
97 The MITgcm has been designed and used to model a wide range of phenomena,
98 from convection on the scale of meters in the ocean to the global pattern of
99 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
100 kinds of problems the model has been used to study, we briefly describe some
101 of them here. A more detailed description of the underlying formulation,
102 numerical algorithm and implementation that lie behind these calculations is
103 given later. Indeed many of the illustrative examples shown below can be
104 easily reproduced: simply download the model (the minimum you need is a PC
105 running linux, together with a FORTRAN\ 77 compiler) and follow the examples
106 described in detail in the documentation.
107
108 \subsection{Global atmosphere: `Held-Suarez' benchmark}
109
110 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
111 both atmospheric and oceanographic flows at both small and large scales.
112
113 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
114 temperature field obtained using the atmospheric isomorph of MITgcm run at
115 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
116 (blue) and warm air along an equatorial band (red). Fully developed
117 baroclinic eddies spawned in the northern hemisphere storm track are
118 evident. There are no mountains or land-sea contrast in this calculation,
119 but you can easily put them in. The model is driven by relaxation to a
120 radiative-convective equilibrium profile, following the description set out
121 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
122 there are no mountains or land-sea contrast.
123
124 %% CNHbegin
125 \input{part1/cubic_eddies_figure}
126 %% CNHend
127
128 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
129 globe permitting a uniform gridding and obviated the need to Fourier filter.
130 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
131 grid, of which the cubed sphere is just one of many choices.
132
133 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
134 wind from a 20-level configuration of
135 the model. It compares favorable with more conventional spatial
136 discretization approaches. The two plots show the field calculated using the
137 cube-sphere grid and the flow calculated using a regular, spherical polar
138 latitude-longitude grid. Both grids are supported within the model.
139
140 %% CNHbegin
141 \input{part1/hs_zave_u_figure}
142 %% CNHend
143
144 \subsection{Ocean gyres}
145
146 Baroclinic instability is a ubiquitous process in the ocean, as well as the
147 atmosphere. Ocean eddies play an important role in modifying the
148 hydrographic structure and current systems of the oceans. Coarse resolution
149 models of the oceans cannot resolve the eddy field and yield rather broad,
150 diffusive patterns of ocean currents. But if the resolution of our models is
151 increased until the baroclinic instability process is resolved, numerical
152 solutions of a different and much more realistic kind, can be obtained.
153
154 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
155 field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
156 resolution on a $lat-lon$
157 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
158 (to avoid the converging of meridian in northern latitudes). 21 vertical
159 levels are used in the vertical with a `lopped cell' representation of
160 topography. The development and propagation of anomalously warm and cold
161 eddies can be clearly seen in the Gulf Stream region. The transport of
162 warm water northward by the mean flow of the Gulf Stream is also clearly
163 visible.
164
165 %% CNHbegin
166 \input{part1/ocean_gyres_figure}
167 %% CNHend
168
169
170 \subsection{Global ocean circulation}
171
172 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
173 the surface of a 4$^{\circ }$
174 global ocean model run with 15 vertical levels. Lopped cells are used to
175 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
176 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
177 mixed boundary conditions on temperature and salinity at the surface. The
178 transfer properties of ocean eddies, convection and mixing is parameterized
179 in this model.
180
181 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
182 circulation of the global ocean in Sverdrups.
183
184 %%CNHbegin
185 \input{part1/global_circ_figure}
186 %%CNHend
187
188 \subsection{Convection and mixing over topography}
189
190 Dense plumes generated by localized cooling on the continental shelf of the
191 ocean may be influenced by rotation when the deformation radius is smaller
192 than the width of the cooling region. Rather than gravity plumes, the
193 mechanism for moving dense fluid down the shelf is then through geostrophic
194 eddies. The simulation shown in the figure \ref{fig::convect-and-topo}
195 (blue is cold dense fluid, red is
196 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
197 trigger convection by surface cooling. The cold, dense water falls down the
198 slope but is deflected along the slope by rotation. It is found that
199 entrainment in the vertical plane is reduced when rotational control is
200 strong, and replaced by lateral entrainment due to the baroclinic
201 instability of the along-slope current.
202
203 %%CNHbegin
204 \input{part1/convect_and_topo}
205 %%CNHend
206
207 \subsection{Boundary forced internal waves}
208
209 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
210 presence of complex geometry makes it an ideal tool to study internal wave
211 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
212 barotropic tidal currents imposed through open boundary conditions.
213
214 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
215 topographic variations on
216 internal wave breaking - the cross-slope velocity is in color, the density
217 contoured. The internal waves are excited by application of open boundary
218 conditions on the left. They propagate to the sloping boundary (represented
219 using MITgcm's finite volume spatial discretization) where they break under
220 nonhydrostatic dynamics.
221
222 %%CNHbegin
223 \input{part1/boundary_forced_waves}
224 %%CNHend
225
226 \subsection{Parameter sensitivity using the adjoint of MITgcm}
227
228 Forward and tangent linear counterparts of MITgcm are supported using an
229 `automatic adjoint compiler'. These can be used in parameter sensitivity and
230 data assimilation studies.
231
232 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
233 maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
234 of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}
235 at 60$^{\circ }$N and $
236 \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
237 a 100 year period. We see that $J$ is
238 sensitive to heat fluxes over the Labrador Sea, one of the important sources
239 of deep water for the thermohaline circulations. This calculation also
240 yields sensitivities to all other model parameters.
241
242 %%CNHbegin
243 \input{part1/adj_hf_ocean_figure}
244 %%CNHend
245
246 \subsection{Global state estimation of the ocean}
247
248 An important application of MITgcm is in state estimation of the global
249 ocean circulation. An appropriately defined `cost function', which measures
250 the departure of the model from observations (both remotely sensed and
251 insitu) over an interval of time, is minimized by adjusting `control
252 parameters' such as air-sea fluxes, the wind field, the initial conditions
253 etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean
254 surface elevation of the ocean obtained by bringing the model in to
255 consistency with altimetric and in-situ observations over the period
256 1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}
257
258 %% CNHbegin
259 \input{part1/globes_figure}
260 %% CNHend
261
262 \subsection{Ocean biogeochemical cycles}
263
264 MITgcm is being used to study global biogeochemical cycles in the ocean. For
265 example one can study the effects of interannual changes in meteorological
266 forcing and upper ocean circulation on the fluxes of carbon dioxide and
267 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
268 the annual air-sea flux of oxygen and its relation to density outcrops in
269 the southern oceans from a single year of a global, interannually varying
270 simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
271 telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
272
273 %%CNHbegin
274 \input{part1/biogeo_figure}
275 %%CNHend
276
277 \subsection{Simulations of laboratory experiments}
278
279 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
280 laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
281 initially homogeneous tank of water ($1m$ in diameter) is driven from its
282 free surface by a rotating heated disk. The combined action of mechanical
283 and thermal forcing creates a lens of fluid which becomes baroclinically
284 unstable. The stratification and depth of penetration of the lens is
285 arrested by its instability in a process analogous to that which sets the
286 stratification of the ACC.
287
288 %%CNHbegin
289 \input{part1/lab_figure}
290 %%CNHend
291
292 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
293 % $Name: $
294
295 \section{Continuous equations in `r' coordinates}
296
297 To render atmosphere and ocean models from one dynamical core we exploit
298 `isomorphisms' between equation sets that govern the evolution of the
299 respective fluids - see figure \ref{fig:isomorphic-equations}.
300 One system of hydrodynamical equations is written down
301 and encoded. The model variables have different interpretations depending on
302 whether the atmosphere or ocean is being studied. Thus, for example, the
303 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
304 modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})
305 and height, $z$, if we are modeling the ocean (right hand side of figure
306 \ref{fig:isomorphic-equations}).
307
308 %%CNHbegin
309 \input{part1/zandpcoord_figure.tex}
310 %%CNHend
311
312 The state of the fluid at any time is characterized by the distribution of
313 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
314 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
315 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
316 of these fields, obtained by applying the laws of classical mechanics and
317 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
318 a generic vertical coordinate, $r$, so that the appropriate
319 kinematic boundary conditions can be applied isomorphically
320 see figure \ref{fig:zandp-vert-coord}.
321
322 %%CNHbegin
323 \input{part1/vertcoord_figure.tex}
324 %%CNHend
325
326 \begin{equation*}
327 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
328 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
329 \text{ horizontal mtm} \label{eq:horizontal_mtm}
330 \end{equation*}
331
332 \begin{equation}
333 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
334 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
335 vertical mtm} \label{eq:vertical_mtm}
336 \end{equation}
337
338 \begin{equation}
339 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
340 \partial r}=0\text{ continuity} \label{eq:continuity}
341 \end{equation}
342
343 \begin{equation}
344 b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
345 \end{equation}
346
347 \begin{equation}
348 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
349 \label{eq:potential_temperature}
350 \end{equation}
351
352 \begin{equation}
353 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
354 \label{eq:humidtity_salt}
355 \end{equation}
356
357 Here:
358
359 \begin{equation*}
360 r\text{ is the vertical coordinate}
361 \end{equation*}
362
363 \begin{equation*}
364 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
365 is the total derivative}
366 \end{equation*}
367
368 \begin{equation*}
369 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
370 \text{ is the `grad' operator}
371 \end{equation*}
372 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
373 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
374 is a unit vector in the vertical
375
376 \begin{equation*}
377 t\text{ is time}
378 \end{equation*}
379
380 \begin{equation*}
381 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
382 velocity}
383 \end{equation*}
384
385 \begin{equation*}
386 \phi \text{ is the `pressure'/`geopotential'}
387 \end{equation*}
388
389 \begin{equation*}
390 \vec{\Omega}\text{ is the Earth's rotation}
391 \end{equation*}
392
393 \begin{equation*}
394 b\text{ is the `buoyancy'}
395 \end{equation*}
396
397 \begin{equation*}
398 \theta \text{ is potential temperature}
399 \end{equation*}
400
401 \begin{equation*}
402 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
403 \end{equation*}
404
405 \begin{equation*}
406 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
407 \mathbf{v}}
408 \end{equation*}
409
410 \begin{equation*}
411 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
412 \end{equation*}
413
414 \begin{equation*}
415 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
416 \end{equation*}
417
418 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
419 `physics' and forcing packages for atmosphere and ocean. These are described
420 in later chapters.
421
422 \subsection{Kinematic Boundary conditions}
423
424 \subsubsection{vertical}
425
426 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
427
428 \begin{equation}
429 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
430 \label{eq:fixedbc}
431 \end{equation}
432
433 \begin{equation}
434 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
435 (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
436 \end{equation}
437
438 Here
439
440 \begin{equation*}
441 R_{moving}=R_{o}+\eta
442 \end{equation*}
443 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
444 whether we are in the atmosphere or ocean) of the `moving surface' in the
445 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
446 of motion.
447
448 \subsubsection{horizontal}
449
450 \begin{equation}
451 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
452 \end{equation}
453 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
454
455 \subsection{Atmosphere}
456
457 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
458
459 \begin{equation}
460 r=p\text{ is the pressure} \label{eq:atmos-r}
461 \end{equation}
462
463 \begin{equation}
464 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
465 coordinates} \label{eq:atmos-omega}
466 \end{equation}
467
468 \begin{equation}
469 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
470 \end{equation}
471
472 \begin{equation}
473 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
474 \label{eq:atmos-b}
475 \end{equation}
476
477 \begin{equation}
478 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
479 \label{eq:atmos-theta}
480 \end{equation}
481
482 \begin{equation}
483 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
484 \end{equation}
485 where
486
487 \begin{equation*}
488 T\text{ is absolute temperature}
489 \end{equation*}
490 \begin{equation*}
491 p\text{ is the pressure}
492 \end{equation*}
493 \begin{eqnarray*}
494 &&z\text{ is the height of the pressure surface} \\
495 &&g\text{ is the acceleration due to gravity}
496 \end{eqnarray*}
497
498 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
499 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
500 \begin{equation}
501 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
502 \end{equation}
503 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
504 constant and $c_{p}$ the specific heat of air at constant pressure.
505
506 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
507
508 \begin{equation*}
509 R_{fixed}=p_{top}=0
510 \end{equation*}
511 In a resting atmosphere the elevation of the mountains at the bottom is
512 given by
513 \begin{equation*}
514 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
515 \end{equation*}
516 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
517 atmosphere.
518
519 The boundary conditions at top and bottom are given by:
520
521 \begin{eqnarray}
522 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
523 \label{eq:fixed-bc-atmos} \\
524 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
525 atmosphere)} \label{eq:moving-bc-atmos}
526 \end{eqnarray}
527
528 Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty})
529 yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
530 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
531
532 \subsection{Ocean}
533
534 In the ocean we interpret:
535 \begin{eqnarray}
536 r &=&z\text{ is the height} \label{eq:ocean-z} \\
537 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
538 \label{eq:ocean-w} \\
539 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
540 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
541 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
542 \end{eqnarray}
543 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
544 acceleration due to gravity.\noindent
545
546 In the above
547
548 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
549
550 The surface of the ocean is given by: $R_{moving}=\eta $
551
552 The position of the resting free surface of the ocean is given by $
553 R_{o}=Z_{o}=0$.
554
555 Boundary conditions are:
556
557 \begin{eqnarray}
558 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
559 \\
560 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
561 \label{eq:moving-bc-ocean}}
562 \end{eqnarray}
563 where $\eta $ is the elevation of the free surface.
564
565 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set
566 of oceanic equations
567 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
568 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
569
570 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
571 Non-hydrostatic forms}
572
573 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
574
575 \begin{equation}
576 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
577 \label{eq:phi-split}
578 \end{equation}
579 and write eq(\ref{eq:incompressible}) in the form:
580
581 \begin{equation}
582 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
583 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
584 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
585 \end{equation}
586
587 \begin{equation}
588 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
589 \end{equation}
590
591 \begin{equation}
592 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
593 \partial r}=G_{\dot{r}} \label{eq:mom-w}
594 \end{equation}
595 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
596
597 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
598 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
599 terms in the momentum equations. In spherical coordinates they take the form
600 \footnote{
601 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
602 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
603 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
604 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
605 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
606 discussion:
607
608 \begin{equation}
609 \left.
610 \begin{tabular}{l}
611 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
612 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
613 \\
614 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
615 \\
616 $+\mathcal{F}_{u}$
617 \end{tabular}
618 \ \right\} \left\{
619 \begin{tabular}{l}
620 \textit{advection} \\
621 \textit{metric} \\
622 \textit{Coriolis} \\
623 \textit{\ Forcing/Dissipation}
624 \end{tabular}
625 \ \right. \qquad \label{eq:gu-speherical}
626 \end{equation}
627
628 \begin{equation}
629 \left.
630 \begin{tabular}{l}
631 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
632 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
633 $ \\
634 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
635 $+\mathcal{F}_{v}$
636 \end{tabular}
637 \ \right\} \left\{
638 \begin{tabular}{l}
639 \textit{advection} \\
640 \textit{metric} \\
641 \textit{Coriolis} \\
642 \textit{\ Forcing/Dissipation}
643 \end{tabular}
644 \ \right. \qquad \label{eq:gv-spherical}
645 \end{equation}
646 \qquad \qquad \qquad \qquad \qquad
647
648 \begin{equation}
649 \left.
650 \begin{tabular}{l}
651 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
652 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
653 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
654 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
655 \end{tabular}
656 \ \right\} \left\{
657 \begin{tabular}{l}
658 \textit{advection} \\
659 \textit{metric} \\
660 \textit{Coriolis} \\
661 \textit{\ Forcing/Dissipation}
662 \end{tabular}
663 \ \right. \label{eq:gw-spherical}
664 \end{equation}
665 \qquad \qquad \qquad \qquad \qquad
666
667 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
668 ' is latitude.
669
670 Grad and div operators in spherical coordinates are defined in appendix
671 OPERATORS.
672
673 %%CNHbegin
674 \input{part1/sphere_coord_figure.tex}
675 %%CNHend
676
677 \subsubsection{Shallow atmosphere approximation}
678
679 Most models are based on the `hydrostatic primitive equations' (HPE's) in
680 which the vertical momentum equation is reduced to a statement of
681 hydrostatic balance and the `traditional approximation' is made in which the
682 Coriolis force is treated approximately and the shallow atmosphere
683 approximation is made.\ The MITgcm need not make the `traditional
684 approximation'. To be able to support consistent non-hydrostatic forms the
685 shallow atmosphere approximation can be relaxed - when dividing through by $
686 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
687 the radius of the earth.
688
689 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
690 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
691
692 These are discussed at length in Marshall et al (1997a).
693
694 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
695 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
696 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
697 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
698 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
699 computed at all other levels by integration of the hydrostatic relation, eq(
700 \ref{eq:hydrostatic}).
701
702 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
703 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
704 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
705 contribution to the pressure field: only the terms underlined twice in Eqs. (
706 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
707 and, simultaneously, the shallow atmosphere approximation is relaxed. In
708 \textbf{QH}\ \textit{all} the metric terms are retained and the full
709 variation of the radial position of a particle monitored. The \textbf{QH}\
710 vertical momentum equation (\ref{eq:mom-w}) becomes:
711
712 \begin{equation*}
713 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
714 \end{equation*}
715 making a small correction to the hydrostatic pressure.
716
717 \textbf{QH} has good energetic credentials - they are the same as for
718 \textbf{HPE}. Importantly, however, it has the same angular momentum
719 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
720 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
721
722 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
723
724 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
725 only a quasi-non-hydrostatic atmospheric isomorph.
726
727 \paragraph{Non-hydrostatic Ocean}
728
729 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
730 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
731 three dimensional elliptic equation must be solved subject to Neumann
732 boundary conditions (see below). It is important to note that use of the
733 full \textbf{NH} does not admit any new `fast' waves in to the system - the
734 incompressible condition eq(\ref{eq:continuity}) has already filtered out
735 acoustic modes. It does, however, ensure that the gravity waves are treated
736 accurately with an exact dispersion relation. The \textbf{NH} set has a
737 complete angular momentum principle and consistent energetics - see White
738 and Bromley, 1995; Marshall et.al.\ 1997a.
739
740 \paragraph{Quasi-nonhydrostatic Atmosphere}
741
742 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
743 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
744 (but only here) by:
745
746 \begin{equation}
747 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
748 \end{equation}
749 where $p_{hy}$ is the hydrostatic pressure.
750
751 \subsubsection{Summary of equation sets supported by model}
752
753 \paragraph{Atmosphere}
754
755 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
756 compressible non-Boussinesq equations in $p-$coordinates are supported.
757
758 \subparagraph{Hydrostatic and quasi-hydrostatic}
759
760 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
761 - see eq(\ref{eq:atmos-prime}).
762
763 \subparagraph{Quasi-nonhydrostatic}
764
765 A quasi-nonhydrostatic form is also supported.
766
767 \paragraph{Ocean}
768
769 \subparagraph{Hydrostatic and quasi-hydrostatic}
770
771 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
772 equations in $z-$coordinates are supported.
773
774 \subparagraph{Non-hydrostatic}
775
776 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
777 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
778 {eq:ocean-salt}).
779
780 \subsection{Solution strategy}
781
782 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
783 NH} models is summarized in Figure \ref{fig:solution-strategy}.
784 Under all dynamics, a 2-d elliptic equation is
785 first solved to find the surface pressure and the hydrostatic pressure at
786 any level computed from the weight of fluid above. Under \textbf{HPE} and
787 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
788 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
789 3-d elliptic equation must be solved for the non-hydrostatic pressure before
790 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
791 stepping forward the vertical momentum equation.
792
793 %%CNHbegin
794 \input{part1/solution_strategy_figure.tex}
795 %%CNHend
796
797 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
798 course, some complication that goes with the inclusion of $\cos \varphi \ $
799 Coriolis terms and the relaxation of the shallow atmosphere approximation.
800 But this leads to negligible increase in computation. In \textbf{NH}, in
801 contrast, one additional elliptic equation - a three-dimensional one - must
802 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
803 essentially negligible in the hydrostatic limit (see detailed discussion in
804 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
805 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
806
807 \subsection{Finding the pressure field}
808 \label{sec:finding_the_pressure_field}
809
810 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
811 pressure field must be obtained diagnostically. We proceed, as before, by
812 dividing the total (pressure/geo) potential in to three parts, a surface
813 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
814 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
815 writing the momentum equation as in (\ref{eq:mom-h}).
816
817 \subsubsection{Hydrostatic pressure}
818
819 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
820 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
821
822 \begin{equation*}
823 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
824 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
825 \end{equation*}
826 and so
827
828 \begin{equation}
829 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
830 \end{equation}
831
832 The model can be easily modified to accommodate a loading term (e.g
833 atmospheric pressure pushing down on the ocean's surface) by setting:
834
835 \begin{equation}
836 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
837 \end{equation}
838
839 \subsubsection{Surface pressure}
840
841 The surface pressure equation can be obtained by integrating continuity,
842 (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
843
844 \begin{equation*}
845 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
846 }_{h}+\partial _{r}\dot{r}\right) dr=0
847 \end{equation*}
848
849 Thus:
850
851 \begin{equation*}
852 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
853 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
854 _{h}dr=0
855 \end{equation*}
856 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
857 r $. The above can be rearranged to yield, using Leibnitz's theorem:
858
859 \begin{equation}
860 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
861 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
862 \label{eq:free-surface}
863 \end{equation}
864 where we have incorporated a source term.
865
866 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
867 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
868 be written
869 \begin{equation}
870 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
871 \label{eq:phi-surf}
872 \end{equation}
873 where $b_{s}$ is the buoyancy at the surface.
874
875 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
876 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
877 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
878 surface' and `rigid lid' approaches are available.
879
880 \subsubsection{Non-hydrostatic pressure}
881
882 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
883 $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
884 (\ref{eq:continuity}), we deduce that:
885
886 \begin{equation}
887 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
888 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
889 \vec{\mathbf{F}} \label{eq:3d-invert}
890 \end{equation}
891
892 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
893 subject to appropriate choice of boundary conditions. This method is usually
894 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
895 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
896 the 3-d problem does not need to be solved.
897
898 \paragraph{Boundary Conditions}
899
900 We apply the condition of no normal flow through all solid boundaries - the
901 coasts (in the ocean) and the bottom:
902
903 \begin{equation}
904 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
905 \end{equation}
906 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
907 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
908 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
909 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
910 tangential component of velocity, $v_{T}$, at all solid boundaries,
911 depending on the form chosen for the dissipative terms in the momentum
912 equations - see below.
913
914 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
915
916 \begin{equation}
917 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
918 \label{eq:inhom-neumann-nh}
919 \end{equation}
920 where
921
922 \begin{equation*}
923 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
924 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
925 \end{equation*}
926 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
927 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
928 exploit classical 3D potential theory and, by introducing an appropriately
929 chosen $\delta $-function sheet of `source-charge', replace the
930 inhomogeneous boundary condition on pressure by a homogeneous one. The
931 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
932 \vec{\mathbf{F}}.$ By simultaneously setting $
933 \begin{array}{l}
934 \widehat{n}.\vec{\mathbf{F}}
935 \end{array}
936 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
937 self-consistent but simpler homogenized Elliptic problem is obtained:
938
939 \begin{equation*}
940 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
941 \end{equation*}
942 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
943 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
944 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
945
946 \begin{equation}
947 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
948 \end{equation}
949
950 If the flow is `close' to hydrostatic balance then the 3-d inversion
951 converges rapidly because $\phi _{nh}\ $is then only a small correction to
952 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
953
954 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
955 does not vanish at $r=R_{moving}$, and so refines the pressure there.
956
957 \subsection{Forcing/dissipation}
958
959 \subsubsection{Forcing}
960
961 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
962 `physics packages' and forcing packages. These are described later on.
963
964 \subsubsection{Dissipation}
965
966 \paragraph{Momentum}
967
968 Many forms of momentum dissipation are available in the model. Laplacian and
969 biharmonic frictions are commonly used:
970
971 \begin{equation}
972 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
973 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
974 \end{equation}
975 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
976 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
977 friction. These coefficients are the same for all velocity components.
978
979 \paragraph{Tracers}
980
981 The mixing terms for the temperature and salinity equations have a similar
982 form to that of momentum except that the diffusion tensor can be
983 non-diagonal and have varying coefficients. $\qquad $
984 \begin{equation}
985 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
986 _{h}^{4}(T,S) \label{eq:diffusion}
987 \end{equation}
988 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
989 horizontal coefficient for biharmonic diffusion. In the simplest case where
990 the subgrid-scale fluxes of heat and salt are parameterized with constant
991 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
992 reduces to a diagonal matrix with constant coefficients:
993
994 \begin{equation}
995 \qquad \qquad \qquad \qquad K=\left(
996 \begin{array}{ccc}
997 K_{h} & 0 & 0 \\
998 0 & K_{h} & 0 \\
999 0 & 0 & K_{v}
1000 \end{array}
1001 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1002 \end{equation}
1003 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1004 coefficients. These coefficients are the same for all tracers (temperature,
1005 salinity ... ).
1006
1007 \subsection{Vector invariant form}
1008
1009 For some purposes it is advantageous to write momentum advection in eq(\ref
1010 {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1011
1012 \begin{equation}
1013 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1014 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1015 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1016 \label{eq:vi-identity}
1017 \end{equation}
1018 This permits alternative numerical treatments of the non-linear terms based
1019 on their representation as a vorticity flux. Because gradients of coordinate
1020 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1021 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1022 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1023 about the geometry is contained in the areas and lengths of the volumes used
1024 to discretize the model.
1025
1026 \subsection{Adjoint}
1027
1028 Tangent linear and adjoint counterparts of the forward model are described
1029 in Chapter 5.
1030
1031 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
1032 % $Name: $
1033
1034 \section{Appendix ATMOSPHERE}
1035
1036 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1037 coordinates}
1038
1039 \label{sect-hpe-p}
1040
1041 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1042 \begin{eqnarray}
1043 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1044 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1045 \label{eq:atmos-mom} \\
1046 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1047 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1048 \partial p} &=&0 \label{eq:atmos-cont} \\
1049 p\alpha &=&RT \label{eq:atmos-eos} \\
1050 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1051 \end{eqnarray}
1052 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1053 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1054 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1055 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1056 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1057 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1058 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1059 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1060 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1061
1062 It is convenient to cast the heat equation in terms of potential temperature
1063 $\theta $ so that it looks more like a generic conservation law.
1064 Differentiating (\ref{eq:atmos-eos}) we get:
1065 \begin{equation*}
1066 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1067 \end{equation*}
1068 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1069 c_{p}=c_{v}+R$, gives:
1070 \begin{equation}
1071 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1072 \label{eq-p-heat-interim}
1073 \end{equation}
1074 Potential temperature is defined:
1075 \begin{equation}
1076 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1077 \end{equation}
1078 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1079 we will make use of the Exner function $\Pi (p)$ which defined by:
1080 \begin{equation}
1081 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1082 \end{equation}
1083 The following relations will be useful and are easily expressed in terms of
1084 the Exner function:
1085 \begin{equation*}
1086 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1087 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1088 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1089 \frac{Dp}{Dt}
1090 \end{equation*}
1091 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1092
1093 The heat equation is obtained by noting that
1094 \begin{equation*}
1095 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1096 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1097 \end{equation*}
1098 and on substituting into (\ref{eq-p-heat-interim}) gives:
1099 \begin{equation}
1100 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1101 \label{eq:potential-temperature-equation}
1102 \end{equation}
1103 which is in conservative form.
1104
1105 For convenience in the model we prefer to step forward (\ref
1106 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1107
1108 \subsubsection{Boundary conditions}
1109
1110 The upper and lower boundary conditions are :
1111 \begin{eqnarray}
1112 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1113 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1114 \label{eq:boundary-condition-atmosphere}
1115 \end{eqnarray}
1116 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1117 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1118 surface ($\phi $ is imposed and $\omega \neq 0$).
1119
1120 \subsubsection{Splitting the geo-potential}
1121
1122 For the purposes of initialization and reducing round-off errors, the model
1123 deals with perturbations from reference (or ``standard'') profiles. For
1124 example, the hydrostatic geopotential associated with the resting atmosphere
1125 is not dynamically relevant and can therefore be subtracted from the
1126 equations. The equations written in terms of perturbations are obtained by
1127 substituting the following definitions into the previous model equations:
1128 \begin{eqnarray}
1129 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1130 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1131 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1132 \end{eqnarray}
1133 The reference state (indicated by subscript ``0'') corresponds to
1134 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1135 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1136 _{o}(p_{o})=g~Z_{topo}$, defined:
1137 \begin{eqnarray*}
1138 \theta _{o}(p) &=&f^{n}(p) \\
1139 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1140 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1141 \end{eqnarray*}
1142 %\begin{eqnarray*}
1143 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1144 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1145 %\end{eqnarray*}
1146
1147 The final form of the HPE's in p coordinates is then:
1148 \begin{eqnarray}
1149 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1150 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1151 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1152 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1153 \partial p} &=&0 \\
1154 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1155 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1156 \end{eqnarray}
1157
1158 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
1159 % $Name: $
1160
1161 \section{Appendix OCEAN}
1162
1163 \subsection{Equations of motion for the ocean}
1164
1165 We review here the method by which the standard (Boussinesq, incompressible)
1166 HPE's for the ocean written in z-coordinates are obtained. The
1167 non-Boussinesq equations for oceanic motion are:
1168 \begin{eqnarray}
1169 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1170 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1171 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1172 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1173 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1174 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1175 \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1176 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1177 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1178 \label{eq:non-boussinesq}
1179 \end{eqnarray}
1180 These equations permit acoustics modes, inertia-gravity waves,
1181 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1182 mode. As written, they cannot be integrated forward consistently - if we
1183 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1184 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1185 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1186 therefore necessary to manipulate the system as follows. Differentiating the
1187 EOS (equation of state) gives:
1188
1189 \begin{equation}
1190 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1191 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1192 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1193 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1194 \end{equation}
1195
1196 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1197 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
1198 \begin{equation}
1199 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1200 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1201 \end{equation}
1202 where we have used an approximation sign to indicate that we have assumed
1203 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1204 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1205 can be explicitly integrated forward:
1206 \begin{eqnarray}
1207 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1208 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1209 \label{eq-cns-hmom} \\
1210 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1211 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1212 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1213 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1214 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1215 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1216 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1217 \end{eqnarray}
1218
1219 \subsubsection{Compressible z-coordinate equations}
1220
1221 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1222 wherever it appears in a product (ie. non-linear term) - this is the
1223 `Boussinesq assumption'. The only term that then retains the full variation
1224 in $\rho $ is the gravitational acceleration:
1225 \begin{eqnarray}
1226 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1227 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1228 \label{eq-zcb-hmom} \\
1229 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1230 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1231 \label{eq-zcb-hydro} \\
1232 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1233 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1234 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1235 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1236 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1237 \end{eqnarray}
1238 These equations still retain acoustic modes. But, because the
1239 ``compressible'' terms are linearized, the pressure equation \ref
1240 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1241 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1242 These are the \emph{truly} compressible Boussinesq equations. Note that the
1243 EOS must have the same pressure dependency as the linearized pressure term,
1244 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1245 c_{s}^{2}}$, for consistency.
1246
1247 \subsubsection{`Anelastic' z-coordinate equations}
1248
1249 The anelastic approximation filters the acoustic mode by removing the
1250 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1251 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1252 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1253 continuity and EOS. A better solution is to change the dependency on
1254 pressure in the EOS by splitting the pressure into a reference function of
1255 height and a perturbation:
1256 \begin{equation*}
1257 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1258 \end{equation*}
1259 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1260 differentiating the EOS, the continuity equation then becomes:
1261 \begin{equation*}
1262 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1263 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1264 \frac{\partial w}{\partial z}=0
1265 \end{equation*}
1266 If the time- and space-scales of the motions of interest are longer than
1267 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1268 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1269 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1270 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1271 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1272 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1273 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1274 anelastic continuity equation:
1275 \begin{equation}
1276 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1277 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1278 \end{equation}
1279 A slightly different route leads to the quasi-Boussinesq continuity equation
1280 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1281 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1282 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1283 \begin{equation}
1284 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1285 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1286 \end{equation}
1287 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1288 equation if:
1289 \begin{equation}
1290 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1291 \end{equation}
1292 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1293 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1294 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1295 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1296 then:
1297 \begin{eqnarray}
1298 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1299 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1300 \label{eq-zab-hmom} \\
1301 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1302 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1303 \label{eq-zab-hydro} \\
1304 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1305 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1306 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1307 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1308 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1309 \end{eqnarray}
1310
1311 \subsubsection{Incompressible z-coordinate equations}
1312
1313 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1314 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1315 yield the ``truly'' incompressible Boussinesq equations:
1316 \begin{eqnarray}
1317 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1318 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1319 \label{eq-ztb-hmom} \\
1320 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1321 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1322 \label{eq-ztb-hydro} \\
1323 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1324 &=&0 \label{eq-ztb-cont} \\
1325 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1326 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1327 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1328 \end{eqnarray}
1329 where $\rho _{c}$ is a constant reference density of water.
1330
1331 \subsubsection{Compressible non-divergent equations}
1332
1333 The above ``incompressible'' equations are incompressible in both the flow
1334 and the density. In many oceanic applications, however, it is important to
1335 retain compressibility effects in the density. To do this we must split the
1336 density thus:
1337 \begin{equation*}
1338 \rho =\rho _{o}+\rho ^{\prime }
1339 \end{equation*}
1340 We then assert that variations with depth of $\rho _{o}$ are unimportant
1341 while the compressible effects in $\rho ^{\prime }$ are:
1342 \begin{equation*}
1343 \rho _{o}=\rho _{c}
1344 \end{equation*}
1345 \begin{equation*}
1346 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1347 \end{equation*}
1348 This then yields what we can call the semi-compressible Boussinesq
1349 equations:
1350 \begin{eqnarray}
1351 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1352 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1353 \mathcal{F}}} \label{eq:ocean-mom} \\
1354 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1355 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1356 \label{eq:ocean-wmom} \\
1357 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1358 &=&0 \label{eq:ocean-cont} \\
1359 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1360 \\
1361 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1362 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1363 \end{eqnarray}
1364 Note that the hydrostatic pressure of the resting fluid, including that
1365 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1366 dynamics.
1367
1368 Though necessary, the assumptions that go into these equations are messy
1369 since we essentially assume a different EOS for the reference density and
1370 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1371 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1372 community and referred to as the primitive equations (HPE).
1373
1374 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.7 2001/10/25 12:06:56 cnh Exp $
1375 % $Name: $
1376
1377 \section{Appendix:OPERATORS}
1378
1379 \subsection{Coordinate systems}
1380
1381 \subsubsection{Spherical coordinates}
1382
1383 In spherical coordinates, the velocity components in the zonal, meridional
1384 and vertical direction respectively, are given by (see Fig.2) :
1385
1386 \begin{equation*}
1387 u=r\cos \varphi \frac{D\lambda }{Dt}
1388 \end{equation*}
1389
1390 \begin{equation*}
1391 v=r\frac{D\varphi }{Dt}\qquad
1392 \end{equation*}
1393 $\qquad \qquad \qquad \qquad $
1394
1395 \begin{equation*}
1396 \dot{r}=\frac{Dr}{Dt}
1397 \end{equation*}
1398
1399 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1400 distance of the particle from the center of the earth, $\Omega $ is the
1401 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1402
1403 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1404 spherical coordinates:
1405
1406 \begin{equation*}
1407 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1408 ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1409 \right)
1410 \end{equation*}
1411
1412 \begin{equation*}
1413 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1414 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1415 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1416 \end{equation*}
1417
1418 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22