/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download) (as text)
Mon Oct 15 19:34:28 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.4: +7 -10 lines
File MIME type: application/x-tex
Mover \part

1 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
2 % $Name: $
3
4 %tci%\documentclass[12pt]{book}
5 %tci%\usepackage{amsmath}
6 %tci%\usepackage{html}
7 %tci%\usepackage{epsfig}
8 %tci%\usepackage{graphics,subfigure}
9 %tci%\usepackage{array}
10 %tci%\usepackage{multirow}
11 %tci%\usepackage{fancyhdr}
12 %tci%\usepackage{psfrag}
13
14 %tci%%TCIDATA{OutputFilter=Latex.dll}
15 %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16 %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17 %tci%%TCIDATA{Language=American English}
18
19 %tci%\fancyhead{}
20 %tci%\fancyhead[LO]{\slshape \rightmark}
21 %tci%\fancyhead[RE]{\slshape \leftmark}
22 %tci%\fancyhead[RO,LE]{\thepage}
23 %tci%\fancyfoot[CO,CE]{\today}
24 %tci%\fancyfoot[RO,LE]{ }
25 %tci%\renewcommand{\headrulewidth}{0.4pt}
26 %tci%\renewcommand{\footrulewidth}{0.4pt}
27 %tci%\setcounter{secnumdepth}{3}
28 %tci%\input{tcilatex}
29
30 %tci%\begin{document}
31
32 %tci%\tableofcontents
33
34
35 % Section: Overview
36
37 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
38 % $Name: $
39
40 \section{Introduction}
41
42 This documentation provides the reader with the information necessary to
43 carry out numerical experiments using MITgcm. It gives a comprehensive
44 description of the continuous equations on which the model is based, the
45 numerical algorithms the model employs and a description of the associated
46 program code. Along with the hydrodynamical kernel, physical and
47 biogeochemical parameterizations of key atmospheric and oceanic processes
48 are available. A number of examples illustrating the use of the model in
49 both process and general circulation studies of the atmosphere and ocean are
50 also presented.
51
52 MITgcm has a number of novel aspects:
53
54 \begin{itemize}
55 \item it can be used to study both atmospheric and oceanic phenomena; one
56 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57 models - see fig
58 \marginpar{
59 Fig.1 One model}\ref{fig:onemodel}
60
61 %% CNHbegin
62 \input{part1/one_model_figure}
63 %% CNHend
64
65 \item it has a non-hydrostatic capability and so can be used to study both
66 small-scale and large scale processes - see fig
67 \marginpar{
68 Fig.2 All scales}\ref{fig:all-scales}
69
70 %% CNHbegin
71 \input{part1/all_scales_figure}
72 %% CNHend
73
74 \item finite volume techniques are employed yielding an intuitive
75 discretization and support for the treatment of irregular geometries using
76 orthogonal curvilinear grids and shaved cells - see fig
77 \marginpar{
78 Fig.3 Finite volumes}\ref{fig:finite-volumes}
79
80 %% CNHbegin
81 \input{part1/fvol_figure}
82 %% CNHend
83
84 \item tangent linear and adjoint counterparts are automatically maintained
85 along with the forward model, permitting sensitivity and optimization
86 studies.
87
88 \item the model is developed to perform efficiently on a wide variety of
89 computational platforms.
90 \end{itemize}
91
92 Key publications reporting on and charting the development of the model are
93 listed in an Appendix.
94
95 We begin by briefly showing some of the results of the model in action to
96 give a feel for the wide range of problems that can be addressed using it.
97
98 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
99 % $Name: $
100
101 \section{Illustrations of the model in action}
102
103 The MITgcm has been designed and used to model a wide range of phenomena,
104 from convection on the scale of meters in the ocean to the global pattern of
105 atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
106 kinds of problems the model has been used to study, we briefly describe some
107 of them here. A more detailed description of the underlying formulation,
108 numerical algorithm and implementation that lie behind these calculations is
109 given later. Indeed many of the illustrative examples shown below can be
110 easily reproduced: simply download the model (the minimum you need is a PC
111 running linux, together with a FORTRAN\ 77 compiler) and follow the examples
112 described in detail in the documentation.
113
114 \subsection{Global atmosphere: `Held-Suarez' benchmark}
115
116 A novel feature of MITgcm is its ability to simulate both atmospheric and
117 oceanographic flows at both small and large scales.
118
119 Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
120 temperature field obtained using the atmospheric isomorph of MITgcm run at
121 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
122 (blue) and warm air along an equatorial band (red). Fully developed
123 baroclinic eddies spawned in the northern hemisphere storm track are
124 evident. There are no mountains or land-sea contrast in this calculation,
125 but you can easily put them in. The model is driven by relaxation to a
126 radiative-convective equilibrium profile, following the description set out
127 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
128 there are no mountains or land-sea contrast.
129
130 %% CNHbegin
131 \input{part1/cubic_eddies_figure}
132 %% CNHend
133
134 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
135 globe permitting a uniform gridding and obviated the need to fourier filter.
136 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
137 grid, of which the cubed sphere is just one of many choices.
138
139 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
140 wind and meridional overturning streamfunction from a 20-level version of
141 the model. It compares favorable with more conventional spatial
142 discretization approaches.
143
144 A regular spherical lat-lon grid can also be used.
145
146 %% CNHbegin
147 \input{part1/hs_zave_u_figure}
148 %% CNHend
149
150 \subsection{Ocean gyres}
151
152 Baroclinic instability is a ubiquitous process in the ocean, as well as the
153 atmosphere. Ocean eddies play an important role in modifying the
154 hydrographic structure and current systems of the oceans. Coarse resolution
155 models of the oceans cannot resolve the eddy field and yield rather broad,
156 diffusive patterns of ocean currents. But if the resolution of our models is
157 increased until the baroclinic instability process is resolved, numerical
158 solutions of a different and much more realistic kind, can be obtained.
159
160 Fig. ?.? shows the surface temperature and velocity field obtained from
161 MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$
162 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
163 (to avoid the converging of meridian in northern latitudes). 21 vertical
164 levels are used in the vertical with a `lopped cell' representation of
165 topography. The development and propagation of anomalously warm and cold
166 eddies can be clearly been seen in the Gulf Stream region. The transport of
167 warm water northward by the mean flow of the Gulf Stream is also clearly
168 visible.
169
170 %% CNHbegin
171 \input{part1/ocean_gyres_figure}
172 %% CNHend
173
174
175 \subsection{Global ocean circulation}
176
177 Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
178 global ocean model run with 15 vertical levels. Lopped cells are used to
179 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
180 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
181 mixed boundary conditions on temperature and salinity at the surface. The
182 transfer properties of ocean eddies, convection and mixing is parameterized
183 in this model.
184
185 Fig.E2b shows the meridional overturning circulation of the global ocean in
186 Sverdrups.
187
188 %%CNHbegin
189 \input{part1/global_circ_figure}
190 %%CNHend
191
192 \subsection{Convection and mixing over topography}
193
194 Dense plumes generated by localized cooling on the continental shelf of the
195 ocean may be influenced by rotation when the deformation radius is smaller
196 than the width of the cooling region. Rather than gravity plumes, the
197 mechanism for moving dense fluid down the shelf is then through geostrophic
198 eddies. The simulation shown in the figure (blue is cold dense fluid, red is
199 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
200 trigger convection by surface cooling. The cold, dense water falls down the
201 slope but is deflected along the slope by rotation. It is found that
202 entrainment in the vertical plane is reduced when rotational control is
203 strong, and replaced by lateral entrainment due to the baroclinic
204 instability of the along-slope current.
205
206 %%CNHbegin
207 \input{part1/convect_and_topo}
208 %%CNHend
209
210 \subsection{Boundary forced internal waves}
211
212 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
213 presence of complex geometry makes it an ideal tool to study internal wave
214 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
215 barotropic tidal currents imposed through open boundary conditions.
216
217 Fig. ?.? shows the influence of cross-slope topographic variations on
218 internal wave breaking - the cross-slope velocity is in color, the density
219 contoured. The internal waves are excited by application of open boundary
220 conditions on the left.\ They propagate to the sloping boundary (represented
221 using MITgcm's finite volume spatial discretization) where they break under
222 nonhydrostatic dynamics.
223
224 %%CNHbegin
225 \input{part1/boundary_forced_waves}
226 %%CNHend
227
228 \subsection{Parameter sensitivity using the adjoint of MITgcm}
229
230 Forward and tangent linear counterparts of MITgcm are supported using an
231 `automatic adjoint compiler'. These can be used in parameter sensitivity and
232 data assimilation studies.
233
234 As one example of application of the MITgcm adjoint, Fig.E4 maps the
235 gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
236 of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $
237 \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is
238 sensitive to heat fluxes over the Labrador Sea, one of the important sources
239 of deep water for the thermohaline circulations. This calculation also
240 yields sensitivities to all other model parameters.
241
242 %%CNHbegin
243 \input{part1/adj_hf_ocean_figure}
244 %%CNHend
245
246 \subsection{Global state estimation of the ocean}
247
248 An important application of MITgcm is in state estimation of the global
249 ocean circulation. An appropriately defined `cost function', which measures
250 the departure of the model from observations (both remotely sensed and
251 insitu) over an interval of time, is minimized by adjusting `control
252 parameters' such as air-sea fluxes, the wind field, the initial conditions
253 etc. Figure ?.? shows an estimate of the time-mean surface elevation of the
254 ocean obtained by bringing the model in to consistency with altimetric and
255 in-situ observations over the period 1992-1997.
256
257 %% CNHbegin
258 \input{part1/globes_figure}
259 %% CNHend
260
261 \subsection{Ocean biogeochemical cycles}
262
263 MITgcm is being used to study global biogeochemical cycles in the ocean. For
264 example one can study the effects of interannual changes in meteorological
265 forcing and upper ocean circulation on the fluxes of carbon dioxide and
266 oxygen between the ocean and atmosphere. The figure shows the annual air-sea
267 flux of oxygen and its relation to density outcrops in the southern oceans
268 from a single year of a global, interannually varying simulation.
269
270 %%CNHbegin
271 \input{part1/biogeo_figure}
272 %%CNHend
273
274 \subsection{Simulations of laboratory experiments}
275
276 Figure ?.? shows MITgcm being used to simulate a laboratory experiment
277 enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
278 initially homogeneous tank of water ($1m$ in diameter) is driven from its
279 free surface by a rotating heated disk. The combined action of mechanical
280 and thermal forcing creates a lens of fluid which becomes baroclinically
281 unstable. The stratification and depth of penetration of the lens is
282 arrested by its instability in a process analogous to that whic sets the
283 stratification of the ACC.
284
285 %%CNHbegin
286 \input{part1/lab_figure}
287 %%CNHend
288
289 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
290 % $Name: $
291
292 \section{Continuous equations in `r' coordinates}
293
294 To render atmosphere and ocean models from one dynamical core we exploit
295 `isomorphisms' between equation sets that govern the evolution of the
296 respective fluids - see fig.4
297 \marginpar{
298 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
299 and encoded. The model variables have different interpretations depending on
300 whether the atmosphere or ocean is being studied. Thus, for example, the
301 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
302 modeling the atmosphere and height, $z$, if we are modeling the ocean.
303
304 %%CNHbegin
305 \input{part1/zandpcoord_figure.tex}
306 %%CNHend
307
308 The state of the fluid at any time is characterized by the distribution of
309 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
310 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
311 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
312 of these fields, obtained by applying the laws of classical mechanics and
313 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
314 a generic vertical coordinate, $r$, see fig.5
315 \marginpar{
316 Fig.5 The vertical coordinate of model}:
317
318 %%CNHbegin
319 \input{part1/vertcoord_figure.tex}
320 %%CNHend
321
322 \begin{equation*}
323 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
324 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
325 \text{ horizontal mtm}
326 \end{equation*}
327
328 \begin{equation*}
329 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
330 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
331 vertical mtm}
332 \end{equation*}
333
334 \begin{equation}
335 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
336 \partial r}=0\text{ continuity} \label{eq:continuous}
337 \end{equation}
338
339 \begin{equation*}
340 b=b(\theta ,S,r)\text{ equation of state}
341 \end{equation*}
342
343 \begin{equation*}
344 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
345 \end{equation*}
346
347 \begin{equation*}
348 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
349 \end{equation*}
350
351 Here:
352
353 \begin{equation*}
354 r\text{ is the vertical coordinate}
355 \end{equation*}
356
357 \begin{equation*}
358 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
359 is the total derivative}
360 \end{equation*}
361
362 \begin{equation*}
363 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
364 \text{ is the `grad' operator}
365 \end{equation*}
366 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
367 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
368 is a unit vector in the vertical
369
370 \begin{equation*}
371 t\text{ is time}
372 \end{equation*}
373
374 \begin{equation*}
375 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
376 velocity}
377 \end{equation*}
378
379 \begin{equation*}
380 \phi \text{ is the `pressure'/`geopotential'}
381 \end{equation*}
382
383 \begin{equation*}
384 \vec{\Omega}\text{ is the Earth's rotation}
385 \end{equation*}
386
387 \begin{equation*}
388 b\text{ is the `buoyancy'}
389 \end{equation*}
390
391 \begin{equation*}
392 \theta \text{ is potential temperature}
393 \end{equation*}
394
395 \begin{equation*}
396 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
397 \end{equation*}
398
399 \begin{equation*}
400 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
401 \mathbf{v}}
402 \end{equation*}
403
404 \begin{equation*}
405 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
406 \end{equation*}
407
408 \begin{equation*}
409 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
410 \end{equation*}
411
412 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
413 extensive `physics' packages for atmosphere and ocean described in Chapter 6.
414
415 \subsection{Kinematic Boundary conditions}
416
417 \subsubsection{vertical}
418
419 at fixed and moving $r$ surfaces we set (see fig.5):
420
421 \begin{equation}
422 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
423 \label{eq:fixedbc}
424 \end{equation}
425
426 \begin{equation}
427 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
428 (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
429 \end{equation}
430
431 Here
432
433 \begin{equation*}
434 R_{moving}=R_{o}+\eta
435 \end{equation*}
436 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
437 whether we are in the atmosphere or ocean) of the `moving surface' in the
438 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
439 of motion.
440
441 \subsubsection{horizontal}
442
443 \begin{equation}
444 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
445 \end{equation}
446 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
447
448 \subsection{Atmosphere}
449
450 In the atmosphere, see fig.5, we interpret:
451
452 \begin{equation}
453 r=p\text{ is the pressure} \label{eq:atmos-r}
454 \end{equation}
455
456 \begin{equation}
457 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
458 coordinates} \label{eq:atmos-omega}
459 \end{equation}
460
461 \begin{equation}
462 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
463 \end{equation}
464
465 \begin{equation}
466 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
467 \label{eq:atmos-b}
468 \end{equation}
469
470 \begin{equation}
471 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
472 \label{eq:atmos-theta}
473 \end{equation}
474
475 \begin{equation}
476 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
477 \end{equation}
478 where
479
480 \begin{equation*}
481 T\text{ is absolute temperature}
482 \end{equation*}
483 \begin{equation*}
484 p\text{ is the pressure}
485 \end{equation*}
486 \begin{eqnarray*}
487 &&z\text{ is the height of the pressure surface} \\
488 &&g\text{ is the acceleration due to gravity}
489 \end{eqnarray*}
490
491 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
492 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
493 \begin{equation}
494 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
495 \end{equation}
496 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
497 constant and $c_{p}$ the specific heat of air at constant pressure.
498
499 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
500
501 \begin{equation*}
502 R_{fixed}=p_{top}=0
503 \end{equation*}
504 In a resting atmosphere the elevation of the mountains at the bottom is
505 given by
506 \begin{equation*}
507 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
508 \end{equation*}
509 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
510 atmosphere.
511
512 The boundary conditions at top and bottom are given by:
513
514 \begin{eqnarray}
515 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
516 \label{eq:fixed-bc-atmos} \\
517 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
518 atmosphere)} \label{eq:moving-bc-atmos}
519 \end{eqnarray}
520
521 Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
522 set of atmospheric equations which, for convenience, are written out in $p$
523 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
524
525 \subsection{Ocean}
526
527 In the ocean we interpret:
528 \begin{eqnarray}
529 r &=&z\text{ is the height} \label{eq:ocean-z} \\
530 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
531 \label{eq:ocean-w} \\
532 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
533 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
534 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
535 \end{eqnarray}
536 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
537 acceleration due to gravity.\noindent
538
539 In the above
540
541 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
542
543 The surface of the ocean is given by: $R_{moving}=\eta $
544
545 The position of the resting free surface of the ocean is given by $
546 R_{o}=Z_{o}=0$.
547
548 Boundary conditions are:
549
550 \begin{eqnarray}
551 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
552 \\
553 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
554 \label{eq:moving-bc-ocean}}
555 \end{eqnarray}
556 where $\eta $ is the elevation of the free surface.
557
558 Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
559 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
560 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
561
562 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
563 Non-hydrostatic forms}
564
565 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
566
567 \begin{equation}
568 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
569 \label{eq:phi-split}
570 \end{equation}
571 and write eq(\ref{incompressible}a,b) in the form:
572
573 \begin{equation}
574 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
575 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
576 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
577 \end{equation}
578
579 \begin{equation}
580 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
581 \end{equation}
582
583 \begin{equation}
584 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
585 \partial r}=G_{\dot{r}} \label{eq:mom-w}
586 \end{equation}
587 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
588
589 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
590 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
591 terms in the momentum equations. In spherical coordinates they take the form
592 \footnote{
593 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
594 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
595 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
596 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
597 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
598 discussion:
599
600 \begin{equation}
601 \left.
602 \begin{tabular}{l}
603 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
604 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
605 \\
606 $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
607 \\
608 $+\mathcal{F}_{u}$
609 \end{tabular}
610 \ \right\} \left\{
611 \begin{tabular}{l}
612 \textit{advection} \\
613 \textit{metric} \\
614 \textit{Coriolis} \\
615 \textit{\ Forcing/Dissipation}
616 \end{tabular}
617 \ \right. \qquad \label{eq:gu-speherical}
618 \end{equation}
619
620 \begin{equation}
621 \left.
622 \begin{tabular}{l}
623 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
624 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
625 $ \\
626 $-\left\{ -2\Omega u\sin lat\right\} $ \\
627 $+\mathcal{F}_{v}$
628 \end{tabular}
629 \ \right\} \left\{
630 \begin{tabular}{l}
631 \textit{advection} \\
632 \textit{metric} \\
633 \textit{Coriolis} \\
634 \textit{\ Forcing/Dissipation}
635 \end{tabular}
636 \ \right. \qquad \label{eq:gv-spherical}
637 \end{equation}
638 \qquad \qquad \qquad \qquad \qquad
639
640 \begin{equation}
641 \left.
642 \begin{tabular}{l}
643 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
644 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
645 ${+}\underline{{2\Omega u\cos lat}}$ \\
646 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
647 \end{tabular}
648 \ \right\} \left\{
649 \begin{tabular}{l}
650 \textit{advection} \\
651 \textit{metric} \\
652 \textit{Coriolis} \\
653 \textit{\ Forcing/Dissipation}
654 \end{tabular}
655 \ \right. \label{eq:gw-spherical}
656 \end{equation}
657 \qquad \qquad \qquad \qquad \qquad
658
659 In the above `${r}$' is the distance from the center of the earth and `$lat$
660 ' is latitude.
661
662 Grad and div operators in spherical coordinates are defined in appendix
663 OPERATORS.
664 \marginpar{
665 Fig.6 Spherical polar coordinate system.}
666
667 %%CNHbegin
668 \input{part1/sphere_coord_figure.tex}
669 %%CNHend
670
671 \subsubsection{Shallow atmosphere approximation}
672
673 Most models are based on the `hydrostatic primitive equations' (HPE's) in
674 which the vertical momentum equation is reduced to a statement of
675 hydrostatic balance and the `traditional approximation' is made in which the
676 Coriolis force is treated approximately and the shallow atmosphere
677 approximation is made.\ The MITgcm need not make the `traditional
678 approximation'. To be able to support consistent non-hydrostatic forms the
679 shallow atmosphere approximation can be relaxed - when dividing through by $
680 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
681 the radius of the earth.
682
683 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
684
685 These are discussed at length in Marshall et al (1997a).
686
687 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
688 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
689 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
690 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
691 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
692 computed at all other levels by integration of the hydrostatic relation, eq(
693 \ref{eq:hydrostatic}).
694
695 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
696 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
697 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
698 contribution to the pressure field: only the terms underlined twice in Eqs. (
699 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
700 and, simultaneously, the shallow atmosphere approximation is relaxed. In
701 \textbf{QH}\ \textit{all} the metric terms are retained and the full
702 variation of the radial position of a particle monitored. The \textbf{QH}\
703 vertical momentum equation (\ref{eq:mom-w}) becomes:
704
705 \begin{equation*}
706 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
707 \end{equation*}
708 making a small correction to the hydrostatic pressure.
709
710 \textbf{QH} has good energetic credentials - they are the same as for
711 \textbf{HPE}. Importantly, however, it has the same angular momentum
712 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
713 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
714
715 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
716
717 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
718 only a quasi-non-hydrostatic atmospheric isomorph.
719
720 \paragraph{Non-hydrostatic Ocean}
721
722 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
723 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
724 three dimensional elliptic equation must be solved subject to Neumann
725 boundary conditions (see below). It is important to note that use of the
726 full \textbf{NH} does not admit any new `fast' waves in to the system - the
727 incompressible condition eq(\ref{eq:continuous})c has already filtered out
728 acoustic modes. It does, however, ensure that the gravity waves are treated
729 accurately with an exact dispersion relation. The \textbf{NH} set has a
730 complete angular momentum principle and consistent energetics - see White
731 and Bromley, 1995; Marshall et.al.\ 1997a.
732
733 \paragraph{Quasi-nonhydrostatic Atmosphere}
734
735 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
736 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
737 (but only here) by:
738
739 \begin{equation}
740 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
741 \end{equation}
742 where $p_{hy}$ is the hydrostatic pressure.
743
744 \subsubsection{Summary of equation sets supported by model}
745
746 \paragraph{Atmosphere}
747
748 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
749 compressible non-Boussinesq equations in $p-$coordinates are supported.
750
751 \subparagraph{Hydrostatic and quasi-hydrostatic}
752
753 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
754 - see eq(\ref{eq:atmos-prime}).
755
756 \subparagraph{Quasi-nonhydrostatic}
757
758 A quasi-nonhydrostatic form is also supported.
759
760 \paragraph{Ocean}
761
762 \subparagraph{Hydrostatic and quasi-hydrostatic}
763
764 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
765 equations in $z-$coordinates are supported.
766
767 \subparagraph{Non-hydrostatic}
768
769 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
770 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
771 {eq:ocean-salt}).
772
773 \subsection{Solution strategy}
774
775 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
776 NH} models is summarized in Fig.7.
777 \marginpar{
778 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
779 first solved to find the surface pressure and the hydrostatic pressure at
780 any level computed from the weight of fluid above. Under \textbf{HPE} and
781 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
782 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
783 3-d elliptic equation must be solved for the non-hydrostatic pressure before
784 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
785 stepping forward the vertical momentum equation.
786
787 %%CNHbegin
788 \input{part1/solution_strategy_figure.tex}
789 %%CNHend
790
791 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
792 course, some complication that goes with the inclusion of $\cos \phi \ $
793 Coriolis terms and the relaxation of the shallow atmosphere approximation.
794 But this leads to negligible increase in computation. In \textbf{NH}, in
795 contrast, one additional elliptic equation - a three-dimensional one - must
796 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
797 essentially negligible in the hydrostatic limit (see detailed discussion in
798 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
799 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
800
801 \subsection{Finding the pressure field}
802
803 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
804 pressure field must be obtained diagnostically. We proceed, as before, by
805 dividing the total (pressure/geo) potential in to three parts, a surface
806 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
807 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
808 writing the momentum equation as in (\ref{eq:mom-h}).
809
810 \subsubsection{Hydrostatic pressure}
811
812 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
813 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
814
815 \begin{equation*}
816 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
817 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
818 \end{equation*}
819 and so
820
821 \begin{equation}
822 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
823 \end{equation}
824
825 The model can be easily modified to accommodate a loading term (e.g
826 atmospheric pressure pushing down on the ocean's surface) by setting:
827
828 \begin{equation}
829 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
830 \end{equation}
831
832 \subsubsection{Surface pressure}
833
834 The surface pressure equation can be obtained by integrating continuity, (
835 \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
836
837 \begin{equation*}
838 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
839 }_{h}+\partial _{r}\dot{r}\right) dr=0
840 \end{equation*}
841
842 Thus:
843
844 \begin{equation*}
845 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
846 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
847 _{h}dr=0
848 \end{equation*}
849 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
850 r $. The above can be rearranged to yield, using Leibnitz's theorem:
851
852 \begin{equation}
853 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
854 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
855 \label{eq:free-surface}
856 \end{equation}
857 where we have incorporated a source term.
858
859 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
860 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
861 be written
862 \begin{equation}
863 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
864 \label{eq:phi-surf}
865 \end{equation}
866 where $b_{s}$ is the buoyancy at the surface.
867
868 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref
869 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
870 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
871 surface' and `rigid lid' approaches are available.
872
873 \subsubsection{Non-hydrostatic pressure}
874
875 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
876 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
877 (\ref{incompressible}), we deduce that:
878
879 \begin{equation}
880 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
881 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
882 \vec{\mathbf{F}} \label{eq:3d-invert}
883 \end{equation}
884
885 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
886 subject to appropriate choice of boundary conditions. This method is usually
887 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
888 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
889 the 3-d problem does not need to be solved.
890
891 \paragraph{Boundary Conditions}
892
893 We apply the condition of no normal flow through all solid boundaries - the
894 coasts (in the ocean) and the bottom:
895
896 \begin{equation}
897 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
898 \end{equation}
899 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
900 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
901 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
902 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
903 tangential component of velocity, $v_{T}$, at all solid boundaries,
904 depending on the form chosen for the dissipative terms in the momentum
905 equations - see below.
906
907 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
908
909 \begin{equation}
910 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
911 \label{eq:inhom-neumann-nh}
912 \end{equation}
913 where
914
915 \begin{equation*}
916 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
917 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
918 \end{equation*}
919 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
920 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
921 exploit classical 3D potential theory and, by introducing an appropriately
922 chosen $\delta $-function sheet of `source-charge', replace the
923 inhomogeneous boundary condition on pressure by a homogeneous one. The
924 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
925 \vec{\mathbf{F}}.$ By simultaneously setting $
926 \begin{array}{l}
927 \widehat{n}.\vec{\mathbf{F}}
928 \end{array}
929 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
930 self-consistent but simpler homogenized Elliptic problem is obtained:
931
932 \begin{equation*}
933 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
934 \end{equation*}
935 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
936 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
937 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
938
939 \begin{equation}
940 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
941 \end{equation}
942
943 If the flow is `close' to hydrostatic balance then the 3-d inversion
944 converges rapidly because $\phi _{nh}\ $is then only a small correction to
945 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
946
947 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
948 does not vanish at $r=R_{moving}$, and so refines the pressure there.
949
950 \subsection{Forcing/dissipation}
951
952 \subsubsection{Forcing}
953
954 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
955 `physics packages' described in detail in chapter ??.
956
957 \subsubsection{Dissipation}
958
959 \paragraph{Momentum}
960
961 Many forms of momentum dissipation are available in the model. Laplacian and
962 biharmonic frictions are commonly used:
963
964 \begin{equation}
965 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
966 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
967 \end{equation}
968 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
969 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
970 friction. These coefficients are the same for all velocity components.
971
972 \paragraph{Tracers}
973
974 The mixing terms for the temperature and salinity equations have a similar
975 form to that of momentum except that the diffusion tensor can be
976 non-diagonal and have varying coefficients. $\qquad $
977 \begin{equation}
978 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
979 _{h}^{4}(T,S) \label{eq:diffusion}
980 \end{equation}
981 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
982 horizontal coefficient for biharmonic diffusion. In the simplest case where
983 the subgrid-scale fluxes of heat and salt are parameterized with constant
984 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
985 reduces to a diagonal matrix with constant coefficients:
986
987 \begin{equation}
988 \qquad \qquad \qquad \qquad K=\left(
989 \begin{array}{ccc}
990 K_{h} & 0 & 0 \\
991 0 & K_{h} & 0 \\
992 0 & 0 & K_{v}
993 \end{array}
994 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
995 \end{equation}
996 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
997 coefficients. These coefficients are the same for all tracers (temperature,
998 salinity ... ).
999
1000 \subsection{Vector invariant form}
1001
1002 For some purposes it is advantageous to write momentum advection in eq(\ref
1003 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
1004
1005 \begin{equation}
1006 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1007 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1008 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1009 \label{eq:vi-identity}
1010 \end{equation}
1011 This permits alternative numerical treatments of the non-linear terms based
1012 on their representation as a vorticity flux. Because gradients of coordinate
1013 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1014 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1015 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1016 about the geometry is contained in the areas and lengths of the volumes used
1017 to discretize the model.
1018
1019 \subsection{Adjoint}
1020
1021 Tangent linear and adjoint counterparts of the forward model and described
1022 in Chapter 5.
1023
1024 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
1025 % $Name: $
1026
1027 \section{Appendix ATMOSPHERE}
1028
1029 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1030 coordinates}
1031
1032 \label{sect-hpe-p}
1033
1034 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1035 \begin{eqnarray}
1036 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1037 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1038 \label{eq:atmos-mom} \\
1039 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1040 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1041 \partial p} &=&0 \label{eq:atmos-cont} \\
1042 p\alpha &=&RT \label{eq:atmos-eos} \\
1043 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1044 \end{eqnarray}
1045 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1046 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1047 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1048 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1049 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1050 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1051 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1052 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1053 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1054
1055 It is convenient to cast the heat equation in terms of potential temperature
1056 $\theta $ so that it looks more like a generic conservation law.
1057 Differentiating (\ref{eq:atmos-eos}) we get:
1058 \begin{equation*}
1059 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1060 \end{equation*}
1061 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1062 c_{p}=c_{v}+R$, gives:
1063 \begin{equation}
1064 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1065 \label{eq-p-heat-interim}
1066 \end{equation}
1067 Potential temperature is defined:
1068 \begin{equation}
1069 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1070 \end{equation}
1071 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1072 we will make use of the Exner function $\Pi (p)$ which defined by:
1073 \begin{equation}
1074 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1075 \end{equation}
1076 The following relations will be useful and are easily expressed in terms of
1077 the Exner function:
1078 \begin{equation*}
1079 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1080 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1081 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1082 \frac{Dp}{Dt}
1083 \end{equation*}
1084 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1085
1086 The heat equation is obtained by noting that
1087 \begin{equation*}
1088 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1089 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1090 \end{equation*}
1091 and on substituting into (\ref{eq-p-heat-interim}) gives:
1092 \begin{equation}
1093 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1094 \label{eq:potential-temperature-equation}
1095 \end{equation}
1096 which is in conservative form.
1097
1098 For convenience in the model we prefer to step forward (\ref
1099 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1100
1101 \subsubsection{Boundary conditions}
1102
1103 The upper and lower boundary conditions are :
1104 \begin{eqnarray}
1105 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1106 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1107 \label{eq:boundary-condition-atmosphere}
1108 \end{eqnarray}
1109 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1110 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1111 surface ($\phi $ is imposed and $\omega \neq 0$).
1112
1113 \subsubsection{Splitting the geo-potential}
1114
1115 For the purposes of initialization and reducing round-off errors, the model
1116 deals with perturbations from reference (or ``standard'') profiles. For
1117 example, the hydrostatic geopotential associated with the resting atmosphere
1118 is not dynamically relevant and can therefore be subtracted from the
1119 equations. The equations written in terms of perturbations are obtained by
1120 substituting the following definitions into the previous model equations:
1121 \begin{eqnarray}
1122 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1123 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1124 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1125 \end{eqnarray}
1126 The reference state (indicated by subscript ``0'') corresponds to
1127 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1128 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1129 _{o}(p_{o})=g~Z_{topo}$, defined:
1130 \begin{eqnarray*}
1131 \theta _{o}(p) &=&f^{n}(p) \\
1132 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1133 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1134 \end{eqnarray*}
1135 %\begin{eqnarray*}
1136 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1137 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1138 %\end{eqnarray*}
1139
1140 The final form of the HPE's in p coordinates is then:
1141 \begin{eqnarray}
1142 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1143 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1144 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1145 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1146 \partial p} &=&0 \\
1147 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1148 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1149 \end{eqnarray}
1150
1151 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
1152 % $Name: $
1153
1154 \section{Appendix OCEAN}
1155
1156 \subsection{Equations of motion for the ocean}
1157
1158 We review here the method by which the standard (Boussinesq, incompressible)
1159 HPE's for the ocean written in z-coordinates are obtained. The
1160 non-Boussinesq equations for oceanic motion are:
1161 \begin{eqnarray}
1162 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1163 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1164 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1165 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1166 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1167 _{h}+\frac{\partial w}{\partial z} &=&0 \\
1168 \rho &=&\rho (\theta ,S,p) \\
1169 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1170 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1171 \end{eqnarray}
1172 These equations permit acoustics modes, inertia-gravity waves,
1173 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1174 mode. As written, they cannot be integrated forward consistently - if we
1175 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1176 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1177 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1178 therefore necessary to manipulate the system as follows. Differentiating the
1179 EOS (equation of state) gives:
1180
1181 \begin{equation}
1182 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1183 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1184 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1185 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1186 \end{equation}
1187
1188 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1189 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
1190 {eq-zns-cont} gives:
1191 \begin{equation}
1192 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1193 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1194 \end{equation}
1195 where we have used an approximation sign to indicate that we have assumed
1196 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1197 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1198 can be explicitly integrated forward:
1199 \begin{eqnarray}
1200 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1201 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1202 \label{eq-cns-hmom} \\
1203 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1204 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1205 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1206 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1207 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1208 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1209 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1210 \end{eqnarray}
1211
1212 \subsubsection{Compressible z-coordinate equations}
1213
1214 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1215 wherever it appears in a product (ie. non-linear term) - this is the
1216 `Boussinesq assumption'. The only term that then retains the full variation
1217 in $\rho $ is the gravitational acceleration:
1218 \begin{eqnarray}
1219 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1220 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1221 \label{eq-zcb-hmom} \\
1222 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1223 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1224 \label{eq-zcb-hydro} \\
1225 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1226 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1227 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1228 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1229 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1230 \end{eqnarray}
1231 These equations still retain acoustic modes. But, because the
1232 ``compressible'' terms are linearized, the pressure equation \ref
1233 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1234 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1235 These are the \emph{truly} compressible Boussinesq equations. Note that the
1236 EOS must have the same pressure dependency as the linearized pressure term,
1237 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1238 c_{s}^{2}}$, for consistency.
1239
1240 \subsubsection{`Anelastic' z-coordinate equations}
1241
1242 The anelastic approximation filters the acoustic mode by removing the
1243 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1244 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1245 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1246 continuity and EOS. A better solution is to change the dependency on
1247 pressure in the EOS by splitting the pressure into a reference function of
1248 height and a perturbation:
1249 \begin{equation*}
1250 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1251 \end{equation*}
1252 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1253 differentiating the EOS, the continuity equation then becomes:
1254 \begin{equation*}
1255 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1256 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1257 \frac{\partial w}{\partial z}=0
1258 \end{equation*}
1259 If the time- and space-scales of the motions of interest are longer than
1260 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1261 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1262 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1263 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1264 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1265 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1266 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1267 anelastic continuity equation:
1268 \begin{equation}
1269 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1270 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1271 \end{equation}
1272 A slightly different route leads to the quasi-Boussinesq continuity equation
1273 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1274 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1275 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1276 \begin{equation}
1277 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1278 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1279 \end{equation}
1280 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1281 equation if:
1282 \begin{equation}
1283 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1284 \end{equation}
1285 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1286 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1287 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1288 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1289 then:
1290 \begin{eqnarray}
1291 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1292 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1293 \label{eq-zab-hmom} \\
1294 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1295 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1296 \label{eq-zab-hydro} \\
1297 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1298 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1299 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1300 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1301 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1302 \end{eqnarray}
1303
1304 \subsubsection{Incompressible z-coordinate equations}
1305
1306 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1307 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1308 yield the ``truly'' incompressible Boussinesq equations:
1309 \begin{eqnarray}
1310 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1311 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1312 \label{eq-ztb-hmom} \\
1313 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1314 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1315 \label{eq-ztb-hydro} \\
1316 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1317 &=&0 \label{eq-ztb-cont} \\
1318 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1319 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1320 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1321 \end{eqnarray}
1322 where $\rho _{c}$ is a constant reference density of water.
1323
1324 \subsubsection{Compressible non-divergent equations}
1325
1326 The above ``incompressible'' equations are incompressible in both the flow
1327 and the density. In many oceanic applications, however, it is important to
1328 retain compressibility effects in the density. To do this we must split the
1329 density thus:
1330 \begin{equation*}
1331 \rho =\rho _{o}+\rho ^{\prime }
1332 \end{equation*}
1333 We then assert that variations with depth of $\rho _{o}$ are unimportant
1334 while the compressible effects in $\rho ^{\prime }$ are:
1335 \begin{equation*}
1336 \rho _{o}=\rho _{c}
1337 \end{equation*}
1338 \begin{equation*}
1339 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1340 \end{equation*}
1341 This then yields what we can call the semi-compressible Boussinesq
1342 equations:
1343 \begin{eqnarray}
1344 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1345 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1346 \mathcal{F}}} \label{eq:ocean-mom} \\
1347 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1348 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1349 \label{eq:ocean-wmom} \\
1350 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1351 &=&0 \label{eq:ocean-cont} \\
1352 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1353 \\
1354 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1355 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1356 \end{eqnarray}
1357 Note that the hydrostatic pressure of the resting fluid, including that
1358 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1359 dynamics.
1360
1361 Though necessary, the assumptions that go into these equations are messy
1362 since we essentially assume a different EOS for the reference density and
1363 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1364 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1365 community and referred to as the primitive equations (HPE).
1366
1367 % $Header: /u/gcmpack/mitgcmdoc/part1/manual.src,v 1.1 2001/10/11 19:36:56 adcroft Exp $
1368 % $Name: $
1369
1370 \section{Appendix:OPERATORS}
1371
1372 \subsection{Coordinate systems}
1373
1374 \subsubsection{Spherical coordinates}
1375
1376 In spherical coordinates, the velocity components in the zonal, meridional
1377 and vertical direction respectively, are given by (see Fig.2) :
1378
1379 \begin{equation*}
1380 u=r\cos \phi \frac{D\lambda }{Dt}
1381 \end{equation*}
1382
1383 \begin{equation*}
1384 v=r\frac{D\phi }{Dt}\qquad
1385 \end{equation*}
1386 $\qquad \qquad \qquad \qquad $
1387
1388 \begin{equation*}
1389 \dot{r}=\frac{Dr}{Dt}
1390 \end{equation*}
1391
1392 Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1393 distance of the particle from the center of the earth, $\Omega $ is the
1394 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1395
1396 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1397 spherical coordinates:
1398
1399 \begin{equation*}
1400 \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }
1401 ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}
1402 \right)
1403 \end{equation*}
1404
1405 \begin{equation*}
1406 \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1407 \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1408 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1409 \end{equation*}
1410
1411 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22