/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Tue Oct 9 10:48:03 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.1: +202 -239 lines
File MIME type: application/x-tex
Part1 updates

1 % $Header: /u/gcmpack/mitgcmdoc/manual.tex,v 1.3 2001/08/09 19:30:00 adcroft Exp $
2 % $Name: $
3 %\usepackage{oldgerm}
4 % I commented the following because it introduced excessive white space
5 %\usepackage{palatcm} % better PDF
6 % page headers and footers
7 %\pagestyle{fancy}
8 % referencing
9 %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}
10 %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}
11 %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}
12 %% \newcommand{\reftabno}[1]{\ref{tab:#1}}
13 %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}
14 %% \newcommand{\reffigno}[1]{\ref{fig:#1}}
15 % stuff for psfrag
16 %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}
17 %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}
18 % This allows numbering of subsubsections
19 % This changes the the chapter title
20 %\renewcommand{\chaptername}{Section}
21
22
23 %%%% \documentclass[12pt]{book}
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 %%%% \usepackage{amsmath}
26 %%%% \usepackage{html}
27 %%%% \usepackage{epsfig}
28 %%%% \usepackage{graphics,subfigure}
29 %%%% \usepackage{array}
30 %%%% \usepackage{multirow}
31 %%%% \usepackage{fancyhdr}
32 %%%% \usepackage{psfrag}
33
34 %%%% %TCIDATA{OutputFilter=Latex.dll}
35 %%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
36 %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
37 %%%% %TCIDATA{Language=American English}
38
39 %%%% \fancyhead{}
40 %%%% \fancyhead[LO]{\slshape \rightmark}
41 %%%% \fancyhead[RE]{\slshape \leftmark}
42 %%%% \fancyhead[RO,LE]{\thepage}
43 %%%% \fancyfoot[CO,CE]{\today}
44 %%%% \fancyfoot[RO,LE]{ }
45 %%%% \renewcommand{\headrulewidth}{0.4pt}
46 %%%% \renewcommand{\footrulewidth}{0.4pt}
47 %%%% \setcounter{secnumdepth}{3}
48 %%%% \input{tcilatex}
49 %%%%
50 %%%% \begin{document}
51 %%%%
52 %%%% \tableofcontents
53 %%%%
54 %%%% \pagebreak
55
56 %%%% \part{MIT GCM basics}
57
58 % Section: Overview
59
60 % $Header: /u/gcmpack/mitgcmdoc/part1/introduction.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
61 % $Name: $
62
63 \section{Introduction}
64
65 This documentation provides the reader with the information necessary to
66 carry out numerical experiments using MITgcm. It gives a comprehensive
67 description of the continuous equations on which the model is based, the
68 numerical algorithms the model employs and a description of the associated
69 program code. Along with the hydrodynamical kernel, physical and
70 biogeochemical parameterizations of key atmospheric and oceanic processes
71 are available. A number of examples illustrating the use of the model in
72 both process and general circulation studies of the atmosphere and ocean are
73 also presented.
74
75 MITgcm has a number of novel aspects:
76
77 \begin{itemize}
78 \item it can be used to study both atmospheric and oceanic phenomena; one
79 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
80 models - see fig.1%
81 \marginpar{
82 Fig.1 One model}\ref{fig:onemodel}
83
84 \item it has a non-hydrostatic capability and so can be used to study both
85 small-scale and large scale processes - see fig.2%
86 \marginpar{
87 Fig.2 All scales}\ref{fig:all-scales}
88
89 \item finite volume techniques are employed yielding an intuitive
90 discretization and support for the treatment of irregular geometries using
91 orthogonal curvilinear grids and shaved cells - see fig.3%
92 \marginpar{
93 Fig.3 Finite volumes}\ref{fig:Finite volumes}
94
95 \item tangent linear and adjoint counterparts are automatically maintained
96 along with the forward model, permitting sensitivity and optimization
97 studies.
98
99 \item the model is developed to perform efficiently on a wide variety of
100 computational platforms.
101 \end{itemize}
102
103 Key publications reporting on and charting the development of the model are
104 listed in an Appendix.
105
106 We begin by briefly showing some of the results of the model in action to
107 give a feel for the wide range of problems that can be addressed using it.
108 \pagebreak
109
110 % $Header: /u/gcmpack/mitgcmdoc/part1/illustration.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
111 % $Name: $
112
113 \section{Illustrations of the model in action}
114
115 The MITgcm has been designed and used to model a wide range of phenomena,
116 from convection on the scale of meters in the ocean to the global pattern of
117 atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
118 kinds of problems the model has been used to study, we briefly describe some
119 of them here. A more detailed description of the underlying formulation,
120 numerical algorithm and implementation that lie behind these calculations is
121 given later. Indeed many of the illustrative examples shown below can be
122 easily reproduced: simply download the model (the minimum you need is a PC
123 running linux, together with a FORTRAN\ 77 compiler) and follow the examples
124 described in detail in the documentation.
125
126 \subsection{Global atmosphere: `Held-Suarez' benchmark}
127
128 A novel feature of MITgcm is its ability to simulate both atmospheric and
129 oceanographic flows at both small and large scales.
130
131 Fig.E1a.\ref{fig:Held-Suarez} shows an instantaneous plot of the 500$mb$
132 temperature field obtained using the atmospheric isomorph of MITgcm run at
133 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
134 (blue) and warm air along an equatorial band (red). Fully developed
135 baroclinic eddies spawned in the northern hemisphere storm track are
136 evident. There are no mountains or land-sea contrast in this calculation,
137 but you can easily put them in. The model is driven by relaxation to a
138 radiative-convective equilibrium profile, following the description set out
139 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
140 there are no mountains or land-sea contrast.
141
142 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
143 globe permitting a uniform gridding and obviated the need to fourier filter.
144 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
145 grid, of which the cubed sphere is just one of many choices.
146
147 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
148 wind and meridional overturning streamfunction from a 20-level version of
149 the model. It compares favorable with more conventional spatial
150 discretization approaches.
151
152 A regular spherical lat-lon grid can also be used.
153
154 \subsection{Ocean gyres}
155
156 Baroclinic instability is a ubiquitous process in the ocean, as well as the
157 atmosphere. Ocean eddies play an important role in modifying the
158 hydrographic structure and current systems of the oceans. Coarse resolution
159 models of the oceans cannot resolve the eddy field and yield rather broad,
160 diffusive patterns of ocean currents. But if the resolution of our models is
161 increased until the baroclinic instability process is resolved, numerical
162 solutions of a different and much more realistic kind, can be obtained.
163
164 Fig. ?.? shows the surface temperature and velocity field obtained from
165 MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$
166 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
167 (to avoid the converging of meridian in northern latitudes). 21 vertical
168 levels are used in the vertical with a `lopped cell' representation of
169 topography. The development and propagation of anomalously warm and cold
170 eddies can be clearly been seen in the Gulf Stream region. The transport of
171 warm water northward by the mean flow of the Gulf Stream is also clearly
172 visible.
173
174 \subsection{Global ocean circulation}
175
176 Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
177 global ocean model run with 15 vertical levels. Lopped cells are used to
178 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
179 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
180 mixed boundary conditions on temperature and salinity at the surface. The
181 transfer properties of ocean eddies, convection and mixing is parameterized
182 in this model.
183
184 Fig.E2b shows the meridional overturning circulation of the global ocean in
185 Sverdrups.
186
187 \subsection{Convection and mixing over topography}
188
189 Dense plumes generated by localized cooling on the continental shelf of the
190 ocean may be influenced by rotation when the deformation radius is smaller
191 than the width of the cooling region. Rather than gravity plumes, the
192 mechanism for moving dense fluid down the shelf is then through geostrophic
193 eddies. The simulation shown in the figure (blue is cold dense fluid, red is
194 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
195 trigger convection by surface cooling. The cold, dense water falls down the
196 slope but is deflected along the slope by rotation. It is found that
197 entrainment in the vertical plane is reduced when rotational control is
198 strong, and replaced by lateral entrainment due to the baroclinic
199 instability of the along-slope current.
200
201 \subsection{Boundary forced internal waves}
202
203 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
204 presence of complex geometry makes it an ideal tool to study internal wave
205 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
206 barotropic tidal currents imposed through open boundary conditions.
207
208 Fig. ?.? shows the influence of cross-slope topographic variations on
209 internal wave breaking - the cross-slope velocity is in color, the density
210 contoured. The internal waves are excited by application of open boundary
211 conditions on the left.\ They propagate to the sloping boundary (represented
212 using MITgcm's finite volume spatial discretization) where they break under
213 nonhydrostatic dynamics.
214
215 \subsection{Parameter sensitivity using the adjoint of MITgcm}
216
217 Forward and tangent linear counterparts of MITgcm are supported using an
218 `automatic adjoint compiler'. These can be used in parameter sensitivity and
219 data assimilation studies.
220
221 As one example of application of the MITgcm adjoint, Fig.E4 maps the
222 gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
223 of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $%
224 \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is
225 sensitive to heat fluxes over the Labrador Sea, one of the important sources
226 of deep water for the thermohaline circulations. This calculation also
227 yields sensitivities to all other model parameters.
228
229 \subsection{Global state estimation of the ocean}
230
231 An important application of MITgcm is in state estimation of the global
232 ocean circulation. An appropriately defined `cost function', which measures
233 the departure of the model from observations (both remotely sensed and
234 insitu) over an interval of time, is minimized by adjusting `control
235 parameters' such as air-sea fluxes, the wind field, the initial conditions
236 etc. Figure ?.? shows an estimate of the time-mean surface elevation of the
237 ocean obtained by bringing the model in to consistency with altimetric and
238 in-situ observations over the period 1992-1997.
239
240 \subsection{Ocean biogeochemical cycles}
241
242 MITgcm is being used to study global biogeochemical cycles in the ocean. For
243 example one can study the effects of interannual changes in meteorological
244 forcing and upper ocean circulation on the fluxes of carbon dioxide and
245 oxygen between the ocean and atmosphere. The figure shows the annual air-sea
246 flux of oxygen and its relation to density outcrops in the southern oceans
247 from a single year of a global, interannually varying simulation.
248
249 Chris - get figure here: http://puddle.mit.edu/\symbol{126}%
250 mick/biogeochem.html
251
252 \subsection{Simulations of laboratory experiments}
253
254 Figure ?.? shows MITgcm being used to simulate a laboratory experiment
255 enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
256 initially homogeneous tank of water ($1m$ in diameter) is driven from its
257 free surface by a rotating heated disk. The combined action of mechanical
258 and thermal forcing creates a lens of fluid which becomes baroclinically
259 unstable. The stratification and depth of penetration of the lens is
260 arrested by its instability in a process analogous to that whic sets the
261 stratification of the ACC.
262
263 % $Header: /u/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
264 % $Name: $
265
266 \section{Continuous equations in `r' coordinates}
267
268 To render atmosphere and ocean models from one dynamical core we exploit
269 `isomorphisms' between equation sets that govern the evolution of the
270 respective fluids - see fig.4%
271 \marginpar{
272 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
273 and encoded. The model variables have different interpretations depending on
274 whether the atmosphere or ocean is being studied. Thus, for example, the
275 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
276 modeling the atmosphere and height, $z$, if we are modeling the ocean.
277
278 The state of the fluid at any time is characterized by the distribution of
279 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
280 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
281 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
282 of these fields, obtained by applying the laws of classical mechanics and
283 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
284 a generic vertical coordinate, $r$, see fig.5%
285 \marginpar{
286 Fig.5 The vertical coordinate of model}:
287
288 \begin{equation*}
289 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
290 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%
291 \text{ horizontal mtm}
292 \end{equation*}
293
294 \begin{equation*}
295 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
296 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
297 vertical mtm}
298 \end{equation*}
299
300 \begin{equation}
301 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
302 \partial r}=0\text{ continuity} \label{eq:continuous}
303 \end{equation}
304
305 \begin{equation*}
306 b=b(\theta ,S,r)\text{ equation of state}
307 \end{equation*}
308
309 \begin{equation*}
310 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
311 \end{equation*}
312
313 \begin{equation*}
314 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
315 \end{equation*}
316
317 Here:
318
319 \begin{equation*}
320 r\text{ is the vertical coordinate}
321 \end{equation*}
322
323 \begin{equation*}
324 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
325 is the total derivative}
326 \end{equation*}
327
328 \begin{equation*}
329 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
330 \text{ is the `grad' operator}
331 \end{equation*}
332 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
333 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
334 is a unit vector in the vertical
335
336 \begin{equation*}
337 t\text{ is time}
338 \end{equation*}
339
340 \begin{equation*}
341 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
342 velocity}
343 \end{equation*}
344
345 \begin{equation*}
346 \phi \text{ is the `pressure'/`geopotential'}
347 \end{equation*}
348
349 \begin{equation*}
350 \vec{\Omega}\text{ is the Earth's rotation}
351 \end{equation*}
352
353 \begin{equation*}
354 b\text{ is the `buoyancy'}
355 \end{equation*}
356
357 \begin{equation*}
358 \theta \text{ is potential temperature}
359 \end{equation*}
360
361 \begin{equation*}
362 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
363 \end{equation*}
364
365 \begin{equation*}
366 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%
367 \mathbf{v}}
368 \end{equation*}
369
370 \begin{equation*}
371 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
372 \end{equation*}
373
374 \begin{equation*}
375 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
376 \end{equation*}
377
378 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
379 extensive `physics' packages for atmosphere and ocean described in Chapter 6.
380
381 \subsection{Kinematic Boundary conditions}
382
383 \subsubsection{vertical}
384
385 at fixed and moving $r$ surfaces we set (see fig.5):
386
387 \begin{equation}
388 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
389 \label{eq:fixedbc}
390 \end{equation}
391
392 \begin{equation}
393 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
394 (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
395 \end{equation}
396
397 Here
398
399 \begin{equation*}
400 R_{moving}=R_{o}+\eta
401 \end{equation*}
402 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
403 whether we are in the atmosphere or ocean) of the `moving surface' in the
404 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
405 of motion.
406
407 \subsubsection{horizontal}
408
409 \begin{equation}
410 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
411 \end{equation}%
412 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
413
414 \subsection{Atmosphere}
415
416 In the atmosphere, see fig.5, we interpret:
417
418 \begin{equation}
419 r=p\text{ is the pressure} \label{eq:atmos-r}
420 \end{equation}
421
422 \begin{equation}
423 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
424 coordinates} \label{eq:atmos-omega}
425 \end{equation}
426
427 \begin{equation}
428 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
429 \end{equation}
430
431 \begin{equation}
432 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
433 \label{eq:atmos-b}
434 \end{equation}
435
436 \begin{equation}
437 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
438 \label{eq:atmos-theta}
439 \end{equation}
440
441 \begin{equation}
442 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
443 \end{equation}
444 where
445
446 \begin{equation*}
447 T\text{ is absolute temperature}
448 \end{equation*}%
449 \begin{equation*}
450 p\text{ is the pressure}
451 \end{equation*}%
452 \begin{eqnarray*}
453 &&z\text{ is the height of the pressure surface} \\
454 &&g\text{ is the acceleration due to gravity}
455 \end{eqnarray*}
456
457 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
458 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
459 \begin{equation}
460 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
461 \end{equation}%
462 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
463 constant and $c_{p}$ the specific heat of air at constant pressure.
464
465 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
466
467 \begin{equation*}
468 R_{fixed}=p_{top}=0
469 \end{equation*}
470 In a resting atmosphere the elevation of the mountains at the bottom is
471 given by
472 \begin{equation*}
473 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
474 \end{equation*}
475 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
476 atmosphere.
477
478 The boundary conditions at top and bottom are given by:
479
480 \begin{eqnarray}
481 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
482 \label{eq:fixed-bc-atmos} \\
483 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
484 atmosphere)} \label{eq:moving-bc-atmos}
485 \end{eqnarray}
486
487 Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
488 set of atmospheric equations which, for convenience, are written out in $p$
489 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
490
491 \subsection{Ocean}
492
493 In the ocean we interpret:
494 \begin{eqnarray}
495 r &=&z\text{ is the height} \label{eq:ocean-z} \\
496 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
497 \label{eq:ocean-w} \\
498 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
499 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
500 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
501 \end{eqnarray}
502 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
503 acceleration due to gravity.\noindent
504
505 In the above
506
507 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
508
509 The surface of the ocean is given by: $R_{moving}=\eta $
510
511 The position of the resting free surface of the ocean is given by $%
512 R_{o}=Z_{o}=0$.
513
514 Boundary conditions are:
515
516 \begin{eqnarray}
517 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
518 \\
519 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %
520 \label{eq:moving-bc-ocean}}
521 \end{eqnarray}
522 where $\eta $ is the elevation of the free surface.
523
524 Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
525 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
526 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
527
528 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
529 Non-hydrostatic forms}
530
531 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
532
533 \begin{equation}
534 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
535 \label{eq:phi-split}
536 \end{equation}%
537 and write eq(\ref{incompressible}a,b) in the form:
538
539 \begin{equation}
540 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
541 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
542 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
543 \end{equation}
544
545 \begin{equation}
546 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
547 \end{equation}
548
549 \begin{equation}
550 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
551 \partial r}=G_{\dot{r}} \label{eq:mom-w}
552 \end{equation}
553 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
554
555 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%
556 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
557 terms in the momentum equations. In spherical coordinates they take the form%
558 \footnote{%
559 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
560 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%
561 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
562 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%
563 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
564 discussion:
565
566 \begin{equation}
567 \left.
568 \begin{tabular}{l}
569 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
570 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
571 \\
572 $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
573 \\
574 $+\mathcal{F}_{u}$%
575 \end{tabular}%
576 \ \right\} \left\{
577 \begin{tabular}{l}
578 \textit{advection} \\
579 \textit{metric} \\
580 \textit{Coriolis} \\
581 \textit{\ Forcing/Dissipation}%
582 \end{tabular}%
583 \ \right. \qquad \label{eq:gu-speherical}
584 \end{equation}
585
586 \begin{equation}
587 \left.
588 \begin{tabular}{l}
589 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
590 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
591 $ \\
592 $-\left\{ -2\Omega u\sin lat\right\} $ \\
593 $+\mathcal{F}_{v}$%
594 \end{tabular}%
595 \ \right\} \left\{
596 \begin{tabular}{l}
597 \textit{advection} \\
598 \textit{metric} \\
599 \textit{Coriolis} \\
600 \textit{\ Forcing/Dissipation}%
601 \end{tabular}%
602 \ \right. \qquad \label{eq:gv-spherical}
603 \end{equation}%
604 \qquad \qquad \qquad \qquad \qquad
605
606 \begin{equation}
607 \left.
608 \begin{tabular}{l}
609 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
610 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
611 ${+}\underline{{2\Omega u\cos lat}}$ \\
612 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%
613 \end{tabular}%
614 \ \right\} \left\{
615 \begin{tabular}{l}
616 \textit{advection} \\
617 \textit{metric} \\
618 \textit{Coriolis} \\
619 \textit{\ Forcing/Dissipation}%
620 \end{tabular}%
621 \ \right. \label{eq:gw-spherical}
622 \end{equation}%
623 \qquad \qquad \qquad \qquad \qquad
624
625 In the above `${r}$' is the distance from the center of the earth and `$lat$%
626 ' is latitude.
627
628 Grad and div operators in spherical coordinates are defined in appendix
629 OPERATORS.%
630 \marginpar{
631 Fig.6 Spherical polar coordinate system.}
632
633 \subsubsection{Shallow atmosphere approximation}
634
635 Most models are based on the `hydrostatic primitive equations' (HPE's) in
636 which the vertical momentum equation is reduced to a statement of
637 hydrostatic balance and the `traditional approximation' is made in which the
638 Coriolis force is treated approximately and the shallow atmosphere
639 approximation is made.\ The MITgcm need not make the `traditional
640 approximation'. To be able to support consistent non-hydrostatic forms the
641 shallow atmosphere approximation can be relaxed - when dividing through by $%
642 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
643 the radius of the earth.
644
645 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
646
647 These are discussed at length in Marshall et al (1997a).
648
649 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
650 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
651 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
652 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
653 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
654 computed at all other levels by integration of the hydrostatic relation, eq(%
655 \ref{eq:hydrostatic}).
656
657 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
658 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
659 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
660 contribution to the pressure field: only the terms underlined twice in Eqs. (%
661 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
662 and, simultaneously, the shallow atmosphere approximation is relaxed. In
663 \textbf{QH}\ \textit{all} the metric terms are retained and the full
664 variation of the radial position of a particle monitored. The \textbf{QH}\
665 vertical momentum equation (\ref{eq:mom-w}) becomes:
666
667 \begin{equation*}
668 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
669 \end{equation*}
670 making a small correction to the hydrostatic pressure.
671
672 \textbf{QH} has good energetic credentials - they are the same as for
673 \textbf{HPE}. Importantly, however, it has the same angular momentum
674 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
675 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
676
677 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
678
679 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
680 only a quasi-non-hydrostatic atmospheric isomorph.
681
682 \paragraph{Non-hydrostatic Ocean}
683
684 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%
685 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
686 three dimensional elliptic equation must be solved subject to Neumann
687 boundary conditions (see below). It is important to note that use of the
688 full \textbf{NH} does not admit any new `fast' waves in to the system - the
689 incompressible condition eq(\ref{eq:continuous})c has already filtered out
690 acoustic modes. It does, however, ensure that the gravity waves are treated
691 accurately with an exact dispersion relation. The \textbf{NH} set has a
692 complete angular momentum principle and consistent energetics - see White
693 and Bromley, 1995; Marshall et.al.\ 1997a.
694
695 \paragraph{Quasi-nonhydrostatic Atmosphere}
696
697 In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
698 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
699 (but only here) by:
700
701 \begin{equation}
702 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
703 \end{equation}%
704 where $p_{hy}$ is the hydrostatic pressure.
705
706 \subsubsection{Summary of equation sets supported by model}
707
708 \paragraph{Atmosphere}
709
710 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
711 compressible non-Boussinesq equations in $p-$coordinates are supported.
712
713 \subparagraph{Hydrostatic and quasi-hydrostatic}
714
715 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
716 - see eq(\ref{eq:atmos-prime}).
717
718 \subparagraph{Quasi-nonhydrostatic}
719
720 A quasi-nonhydrostatic form is also supported.
721
722 \paragraph{Ocean}
723
724 \subparagraph{Hydrostatic and quasi-hydrostatic}
725
726 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
727 equations in $z-$coordinates are supported.
728
729 \subparagraph{Non-hydrostatic}
730
731 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
732 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%
733 {eq:ocean-salt}).
734
735 \subsection{Solution strategy}
736
737 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
738 NH} models is summarized in Fig.7.%
739 \marginpar{
740 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
741 first solved to find the surface pressure and the hydrostatic pressure at
742 any level computed from the weight of fluid above. Under \textbf{HPE} and
743 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
744 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
745 3-d elliptic equation must be solved for the non-hydrostatic pressure before
746 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
747 stepping forward the vertical momentum equation.
748
749 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
750 course, some complication that goes with the inclusion of $\cos \phi \ $%
751 Coriolis terms and the relaxation of the shallow atmosphere approximation.
752 But this leads to negligible increase in computation. In \textbf{NH}, in
753 contrast, one additional elliptic equation - a three-dimensional one - must
754 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
755 essentially negligible in the hydrostatic limit (see detailed discussion in
756 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
757 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
758
759 \subsection{Finding the pressure field}
760
761 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
762 pressure field must be obtained diagnostically. We proceed, as before, by
763 dividing the total (pressure/geo) potential in to three parts, a surface
764 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
765 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
766 writing the momentum equation as in (\ref{eq:mom-h}).
767
768 \subsubsection{Hydrostatic pressure}
769
770 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
771 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
772
773 \begin{equation*}
774 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%
775 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
776 \end{equation*}
777 and so
778
779 \begin{equation}
780 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
781 \end{equation}
782
783 The model can be easily modified to accommodate a loading term (e.g
784 atmospheric pressure pushing down on the ocean's surface) by setting:
785
786 \begin{equation}
787 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
788 \end{equation}
789
790 \subsubsection{Surface pressure}
791
792 The surface pressure equation can be obtained by integrating continuity, (%
793 \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
794
795 \begin{equation*}
796 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
797 }_{h}+\partial _{r}\dot{r}\right) dr=0
798 \end{equation*}
799
800 Thus:
801
802 \begin{equation*}
803 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
804 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
805 _{h}dr=0
806 \end{equation*}
807 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
808 r $. The above can be rearranged to yield, using Leibnitz's theorem:
809
810 \begin{equation}
811 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
812 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
813 \label{eq:free-surface}
814 \end{equation}%
815 where we have incorporated a source term.
816
817 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
818 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
819 be written
820 \begin{equation}
821 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
822 \label{eq:phi-surf}
823 \end{equation}%
824 where $b_{s}$ is the buoyancy at the surface.
825
826 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%
827 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
828 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
829 surface' and `rigid lid' approaches are available.
830
831 \subsubsection{Non-hydrostatic pressure}
832
833 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
834 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
835 (\ref{incompressible}), we deduce that:
836
837 \begin{equation}
838 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
839 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
840 \vec{\mathbf{F}} \label{eq:3d-invert}
841 \end{equation}
842
843 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
844 subject to appropriate choice of boundary conditions. This method is usually
845 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
846 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
847 the 3-d problem does not need to be solved.
848
849 \paragraph{Boundary Conditions}
850
851 We apply the condition of no normal flow through all solid boundaries - the
852 coasts (in the ocean) and the bottom:
853
854 \begin{equation}
855 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
856 \end{equation}
857 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
858 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
859 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
860 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
861 tangential component of velocity, $v_{T}$, at all solid boundaries,
862 depending on the form chosen for the dissipative terms in the momentum
863 equations - see below.
864
865 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
866
867 \begin{equation}
868 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
869 \label{eq:inhom-neumann-nh}
870 \end{equation}
871 where
872
873 \begin{equation*}
874 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
875 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
876 \end{equation*}%
877 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
878 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
879 exploit classical 3D potential theory and, by introducing an appropriately
880 chosen $\delta $-function sheet of `source-charge', replace the
881 inhomogeneous boundary condition on pressure by a homogeneous one. The
882 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $%
883 \vec{\mathbf{F}}.$ By simultaneously setting $%
884 \begin{array}{l}
885 \widehat{n}.\vec{\mathbf{F}}%
886 \end{array}%
887 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
888 self-consistent but simpler homogenized Elliptic problem is obtained:
889
890 \begin{equation*}
891 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
892 \end{equation*}%
893 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
894 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%
895 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
896
897 \begin{equation}
898 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
899 \end{equation}
900
901 If the flow is `close' to hydrostatic balance then the 3-d inversion
902 converges rapidly because $\phi _{nh}\ $is then only a small correction to
903 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
904
905 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
906 does not vanish at $r=R_{moving}$, and so refines the pressure there.
907
908 \subsection{Forcing/dissipation}
909
910 \subsubsection{Forcing}
911
912 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
913 `physics packages' described in detail in chapter ??.
914
915 \subsubsection{Dissipation}
916
917 \paragraph{Momentum}
918
919 Many forms of momentum dissipation are available in the model. Laplacian and
920 biharmonic frictions are commonly used:
921
922 \begin{equation}
923 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
924 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
925 \end{equation}
926 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
927 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
928 friction. These coefficients are the same for all velocity components.
929
930 \paragraph{Tracers}
931
932 The mixing terms for the temperature and salinity equations have a similar
933 form to that of momentum except that the diffusion tensor can be
934 non-diagonal and have varying coefficients. $\qquad $%
935 \begin{equation}
936 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
937 _{h}^{4}(T,S) \label{eq:diffusion}
938 \end{equation}
939 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
940 horizontal coefficient for biharmonic diffusion. In the simplest case where
941 the subgrid-scale fluxes of heat and salt are parameterized with constant
942 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
943 reduces to a diagonal matrix with constant coefficients:
944
945 \begin{equation}
946 \qquad \qquad \qquad \qquad K=\left(
947 \begin{array}{ccc}
948 K_{h} & 0 & 0 \\
949 0 & K_{h} & 0 \\
950 0 & 0 & K_{v}%
951 \end{array}
952 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
953 \end{equation}
954 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
955 coefficients. These coefficients are the same for all tracers (temperature,
956 salinity ... ).
957
958 \subsection{Vector invariant form}
959
960 For some purposes it is advantageous to write momentum advection in eq(\ref%
961 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
962
963 \begin{equation}
964 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
965 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %
966 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
967 \label{eq:vi-identity}
968 \end{equation}%
969 This permits alternative numerical treatments of the non-linear terms based
970 on their representation as a vorticity flux. Because gradients of coordinate
971 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
972 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%
973 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
974 about the geometry is contained in the areas and lengths of the volumes used
975 to discretize the model.
976
977 \subsection{Adjoint}
978
979 Tangent linear and adjoint counterparts of the forward model and described
980 in Chapter 5.
981
982 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
983 % $Name: $
984
985 \section{Appendix ATMOSPHERE}
986
987 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
988 coordinates}
989
990 \label{sect-hpe-p}
991
992 The hydrostatic primitive equations (HPEs) in p-coordinates are:
993 \begin{eqnarray}
994 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
995 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
996 \label{eq:atmos-mom} \\
997 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
998 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
999 \partial p} &=&0 \label{eq:atmos-cont} \\
1000 p\alpha &=&RT \label{eq:atmos-eos} \\
1001 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1002 \end{eqnarray}%
1003 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1004 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1005 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1006 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1007 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
1008 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%
1009 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%
1010 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
1011 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1012
1013 It is convenient to cast the heat equation in terms of potential temperature
1014 $\theta $ so that it looks more like a generic conservation law.
1015 Differentiating (\ref{eq:atmos-eos}) we get:
1016 \begin{equation*}
1017 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1018 \end{equation*}%
1019 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%
1020 c_{p}=c_{v}+R$, gives:
1021 \begin{equation}
1022 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1023 \label{eq-p-heat-interim}
1024 \end{equation}%
1025 Potential temperature is defined:
1026 \begin{equation}
1027 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1028 \end{equation}%
1029 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1030 we will make use of the Exner function $\Pi (p)$ which defined by:
1031 \begin{equation}
1032 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1033 \end{equation}%
1034 The following relations will be useful and are easily expressed in terms of
1035 the Exner function:
1036 \begin{equation*}
1037 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1038 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
1039 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
1040 \frac{Dp}{Dt}
1041 \end{equation*}%
1042 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1043
1044 The heat equation is obtained by noting that
1045 \begin{equation*}
1046 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1047 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1048 \end{equation*}
1049 and on substituting into (\ref{eq-p-heat-interim}) gives:
1050 \begin{equation}
1051 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1052 \label{eq:potential-temperature-equation}
1053 \end{equation}
1054 which is in conservative form.
1055
1056 For convenience in the model we prefer to step forward (\ref%
1057 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1058
1059 \subsubsection{Boundary conditions}
1060
1061 The upper and lower boundary conditions are :
1062 \begin{eqnarray}
1063 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1064 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1065 \label{eq:boundary-condition-atmosphere}
1066 \end{eqnarray}
1067 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1068 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1069 surface ($\phi $ is imposed and $\omega \neq 0$).
1070
1071 \subsubsection{Splitting the geo-potential}
1072
1073 For the purposes of initialization and reducing round-off errors, the model
1074 deals with perturbations from reference (or ``standard'') profiles. For
1075 example, the hydrostatic geopotential associated with the resting atmosphere
1076 is not dynamically relevant and can therefore be subtracted from the
1077 equations. The equations written in terms of perturbations are obtained by
1078 substituting the following definitions into the previous model equations:
1079 \begin{eqnarray}
1080 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1081 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1082 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1083 \end{eqnarray}
1084 The reference state (indicated by subscript ``0'') corresponds to
1085 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1086 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1087 _{o}(p_{o})=g~Z_{topo}$, defined:
1088 \begin{eqnarray*}
1089 \theta _{o}(p) &=&f^{n}(p) \\
1090 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1091 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1092 \end{eqnarray*}
1093 %\begin{eqnarray*}
1094 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1095 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1096 %\end{eqnarray*}
1097
1098 The final form of the HPE's in p coordinates is then:
1099 \begin{eqnarray}
1100 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1101 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1102 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1103 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1104 \partial p} &=&0 \\
1105 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1106 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1107 \end{eqnarray}
1108
1109 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_ocean.tex,v 1.2 2001/09/11 14:39:38 cnh Exp $
1110 % $Name: $
1111
1112 \section{Appendix OCEAN}
1113
1114 \subsection{Equations of motion for the ocean}
1115
1116 We review here the method by which the standard (Boussinesq, incompressible)
1117 HPE's for the ocean written in z-coordinates are obtained. The
1118 non-Boussinesq equations for oceanic motion are:
1119 \begin{eqnarray}
1120 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1121 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1122 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1123 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1124 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
1125 _{h}+\frac{\partial w}{\partial z} &=&0 \\
1126 \rho &=&\rho (\theta ,S,p) \\
1127 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1128 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1129 \end{eqnarray}%
1130 These equations permit acoustics modes, inertia-gravity waves,
1131 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1132 mode. As written, they cannot be integrated forward consistently - if we
1133 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1134 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%
1135 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1136 therefore necessary to manipulate the system as follows. Differentiating the
1137 EOS (equation of state) gives:
1138
1139 \begin{equation}
1140 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1141 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1142 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1143 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1144 \end{equation}
1145
1146 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1147 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%
1148 {eq-zns-cont} gives:
1149 \begin{equation}
1150 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1151 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1152 \end{equation}
1153 where we have used an approximation sign to indicate that we have assumed
1154 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1155 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1156 can be explicitly integrated forward:
1157 \begin{eqnarray}
1158 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1159 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1160 \label{eq-cns-hmom} \\
1161 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1162 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1163 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1164 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1165 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1166 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1167 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1168 \end{eqnarray}
1169
1170 \subsubsection{Compressible z-coordinate equations}
1171
1172 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1173 wherever it appears in a product (ie. non-linear term) - this is the
1174 `Boussinesq assumption'. The only term that then retains the full variation
1175 in $\rho $ is the gravitational acceleration:
1176 \begin{eqnarray}
1177 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1178 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1179 \label{eq-zcb-hmom} \\
1180 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1181 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1182 \label{eq-zcb-hydro} \\
1183 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
1184 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1185 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1186 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1187 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1188 \end{eqnarray}
1189 These equations still retain acoustic modes. But, because the
1190 ``compressible'' terms are linearized, the pressure equation \ref%
1191 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1192 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1193 These are the \emph{truly} compressible Boussinesq equations. Note that the
1194 EOS must have the same pressure dependency as the linearized pressure term,
1195 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
1196 c_{s}^{2}}$, for consistency.
1197
1198 \subsubsection{`Anelastic' z-coordinate equations}
1199
1200 The anelastic approximation filters the acoustic mode by removing the
1201 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
1202 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
1203 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1204 continuity and EOS. A better solution is to change the dependency on
1205 pressure in the EOS by splitting the pressure into a reference function of
1206 height and a perturbation:
1207 \begin{equation*}
1208 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1209 \end{equation*}
1210 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1211 differentiating the EOS, the continuity equation then becomes:
1212 \begin{equation*}
1213 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
1214 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
1215 \frac{\partial w}{\partial z}=0
1216 \end{equation*}
1217 If the time- and space-scales of the motions of interest are longer than
1218 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
1219 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1220 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
1221 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1222 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1223 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1224 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1225 anelastic continuity equation:
1226 \begin{equation}
1227 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
1228 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1229 \end{equation}
1230 A slightly different route leads to the quasi-Boussinesq continuity equation
1231 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
1232 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
1233 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1234 \begin{equation}
1235 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1236 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1237 \end{equation}
1238 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1239 equation if:
1240 \begin{equation}
1241 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1242 \end{equation}
1243 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1244 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
1245 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1246 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1247 then:
1248 \begin{eqnarray}
1249 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1250 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1251 \label{eq-zab-hmom} \\
1252 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1253 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1254 \label{eq-zab-hydro} \\
1255 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1256 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1257 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1258 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1259 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1260 \end{eqnarray}
1261
1262 \subsubsection{Incompressible z-coordinate equations}
1263
1264 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1265 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1266 yield the ``truly'' incompressible Boussinesq equations:
1267 \begin{eqnarray}
1268 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1269 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1270 \label{eq-ztb-hmom} \\
1271 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
1272 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1273 \label{eq-ztb-hydro} \\
1274 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1275 &=&0 \label{eq-ztb-cont} \\
1276 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1277 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1278 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1279 \end{eqnarray}
1280 where $\rho _{c}$ is a constant reference density of water.
1281
1282 \subsubsection{Compressible non-divergent equations}
1283
1284 The above ``incompressible'' equations are incompressible in both the flow
1285 and the density. In many oceanic applications, however, it is important to
1286 retain compressibility effects in the density. To do this we must split the
1287 density thus:
1288 \begin{equation*}
1289 \rho =\rho _{o}+\rho ^{\prime }
1290 \end{equation*}%
1291 We then assert that variations with depth of $\rho _{o}$ are unimportant
1292 while the compressible effects in $\rho ^{\prime }$ are:
1293 \begin{equation*}
1294 \rho _{o}=\rho _{c}
1295 \end{equation*}%
1296 \begin{equation*}
1297 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1298 \end{equation*}%
1299 This then yields what we can call the semi-compressible Boussinesq
1300 equations:
1301 \begin{eqnarray}
1302 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1303 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
1304 \mathcal{F}}} \label{eq:ocean-mom} \\
1305 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1306 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1307 \label{eq:ocean-wmom} \\
1308 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1309 &=&0 \label{eq:ocean-cont} \\
1310 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1311 \\
1312 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1313 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1314 \end{eqnarray}%
1315 Note that the hydrostatic pressure of the resting fluid, including that
1316 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1317 dynamics.
1318
1319 Though necessary, the assumptions that go into these equations are messy
1320 since we essentially assume a different EOS for the reference density and
1321 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1322 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1323 community and referred to as the primitive equations (HPE).
1324
1325 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_operators.tex,v 1.1.1.1 2001/08/08 16:16:19 adcroft Exp $
1326 % $Name: $
1327
1328 \section{Appendix:OPERATORS}
1329
1330 \subsection{Coordinate systems}
1331
1332 \subsubsection{Spherical coordinates}
1333
1334 In spherical coordinates, the velocity components in the zonal, meridional
1335 and vertical direction respectively, are given by (see Fig.2) :
1336
1337 \begin{equation*}
1338 u=r\cos \phi \frac{D\lambda }{Dt}
1339 \end{equation*}
1340
1341 \begin{equation*}
1342 v=r\frac{D\phi }{Dt}\qquad
1343 \end{equation*}
1344 $\qquad \qquad \qquad \qquad $
1345
1346 \begin{equation*}
1347 \dot{r}=\frac{Dr}{Dt}
1348 \end{equation*}
1349
1350 Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1351 distance of the particle from the center of the earth, $\Omega $ is the
1352 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1353
1354 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1355 spherical coordinates:
1356
1357 \begin{equation*}
1358 \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
1359 ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
1360 \right)
1361 \end{equation*}
1362
1363 \begin{equation*}
1364 \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1365 \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1366 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1367 \end{equation*}
1368
1369 %%%% \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22