1 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
%tci%\documentclass[12pt]{book} |
5 |
%tci%\usepackage{amsmath} |
6 |
%tci%\usepackage{html} |
7 |
%tci%\usepackage{epsfig} |
8 |
%tci%\usepackage{graphics,subfigure} |
9 |
%tci%\usepackage{array} |
10 |
%tci%\usepackage{multirow} |
11 |
%tci%\usepackage{fancyhdr} |
12 |
%tci%\usepackage{psfrag} |
13 |
|
14 |
%tci%%TCIDATA{OutputFilter=Latex.dll} |
15 |
%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
16 |
%tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
17 |
%tci%%TCIDATA{Language=American English} |
18 |
|
19 |
%tci%\fancyhead{} |
20 |
%tci%\fancyhead[LO]{\slshape \rightmark} |
21 |
%tci%\fancyhead[RE]{\slshape \leftmark} |
22 |
%tci%\fancyhead[RO,LE]{\thepage} |
23 |
%tci%\fancyfoot[CO,CE]{\today} |
24 |
%tci%\fancyfoot[RO,LE]{ } |
25 |
%tci%\renewcommand{\headrulewidth}{0.4pt} |
26 |
%tci%\renewcommand{\footrulewidth}{0.4pt} |
27 |
%tci%\setcounter{secnumdepth}{3} |
28 |
%tci%\input{tcilatex} |
29 |
|
30 |
%tci%\begin{document} |
31 |
|
32 |
%tci%\tableofcontents |
33 |
|
34 |
|
35 |
% Section: Overview |
36 |
|
37 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
38 |
% $Name: $ |
39 |
|
40 |
\section{Introduction} |
41 |
|
42 |
This documentation provides the reader with the information necessary to |
43 |
carry out numerical experiments using MITgcm. It gives a comprehensive |
44 |
description of the continuous equations on which the model is based, the |
45 |
numerical algorithms the model employs and a description of the associated |
46 |
program code. Along with the hydrodynamical kernel, physical and |
47 |
biogeochemical parameterizations of key atmospheric and oceanic processes |
48 |
are available. A number of examples illustrating the use of the model in |
49 |
both process and general circulation studies of the atmosphere and ocean are |
50 |
also presented. |
51 |
|
52 |
MITgcm has a number of novel aspects: |
53 |
|
54 |
\begin{itemize} |
55 |
\item it can be used to study both atmospheric and oceanic phenomena; one |
56 |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
57 |
models - see fig \ref{fig:onemodel} |
58 |
|
59 |
%% CNHbegin |
60 |
\input{part1/one_model_figure} |
61 |
%% CNHend |
62 |
|
63 |
\item it has a non-hydrostatic capability and so can be used to study both |
64 |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
65 |
|
66 |
%% CNHbegin |
67 |
\input{part1/all_scales_figure} |
68 |
%% CNHend |
69 |
|
70 |
\item finite volume techniques are employed yielding an intuitive |
71 |
discretization and support for the treatment of irregular geometries using |
72 |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
73 |
|
74 |
%% CNHbegin |
75 |
\input{part1/fvol_figure} |
76 |
%% CNHend |
77 |
|
78 |
\item tangent linear and adjoint counterparts are automatically maintained |
79 |
along with the forward model, permitting sensitivity and optimization |
80 |
studies. |
81 |
|
82 |
\item the model is developed to perform efficiently on a wide variety of |
83 |
computational platforms. |
84 |
\end{itemize} |
85 |
|
86 |
Key publications reporting on and charting the development of the model are: |
87 |
|
88 |
\begin{verbatim} |
89 |
|
90 |
Hill, C. and J. Marshall, (1995) |
91 |
Application of a Parallel Navier-Stokes Model to Ocean Circulation in |
92 |
Parallel Computational Fluid Dynamics |
93 |
In Proceedings of Parallel Computational Fluid Dynamics: Implementations |
94 |
and Results Using Parallel Computers, 545-552. |
95 |
Elsevier Science B.V.: New York |
96 |
|
97 |
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) |
98 |
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, |
99 |
J. Geophysical Res., 102(C3), 5733-5752. |
100 |
|
101 |
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) |
102 |
A finite-volume, incompressible Navier Stokes model for studies of the ocean |
103 |
on parallel computers, |
104 |
J. Geophysical Res., 102(C3), 5753-5766. |
105 |
|
106 |
Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) |
107 |
Representation of topography by shaved cells in a height coordinate ocean |
108 |
model |
109 |
Mon Wea Rev, vol 125, 2293-2315 |
110 |
|
111 |
Marshall, J., Jones, H. and C. Hill, (1998) |
112 |
Efficient ocean modeling using non-hydrostatic algorithms |
113 |
Journal of Marine Systems, 18, 115-134 |
114 |
|
115 |
Adcroft, A., Hill C. and J. Marshall: (1999) |
116 |
A new treatment of the Coriolis terms in C-grid models at both high and low |
117 |
resolutions, |
118 |
Mon. Wea. Rev. Vol 127, pages 1928-1936 |
119 |
|
120 |
Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) |
121 |
A Strategy for Terascale Climate Modeling. |
122 |
In Proceedings of the Eight ECMWF Workshop on the Use of Parallel Processors |
123 |
in Meteorology |
124 |
|
125 |
Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) |
126 |
Construction of the adjoint MIT ocean general circulation model and |
127 |
application to Atlantic heat transport variability |
128 |
J. Geophysical Res., 104(C12), 29,529-29,547. |
129 |
|
130 |
|
131 |
\end{verbatim} |
132 |
|
133 |
We begin by briefly showing some of the results of the model in action to |
134 |
give a feel for the wide range of problems that can be addressed using it. |
135 |
|
136 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
137 |
% $Name: $ |
138 |
|
139 |
\section{Illustrations of the model in action} |
140 |
|
141 |
The MITgcm has been designed and used to model a wide range of phenomena, |
142 |
from convection on the scale of meters in the ocean to the global pattern of |
143 |
atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the |
144 |
kinds of problems the model has been used to study, we briefly describe some |
145 |
of them here. A more detailed description of the underlying formulation, |
146 |
numerical algorithm and implementation that lie behind these calculations is |
147 |
given later. Indeed many of the illustrative examples shown below can be |
148 |
easily reproduced: simply download the model (the minimum you need is a PC |
149 |
running Linux, together with a FORTRAN\ 77 compiler) and follow the examples |
150 |
described in detail in the documentation. |
151 |
|
152 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
153 |
|
154 |
A novel feature of MITgcm is its ability to simulate, using one basic algorithm, |
155 |
both atmospheric and oceanographic flows at both small and large scales. |
156 |
|
157 |
Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ |
158 |
temperature field obtained using the atmospheric isomorph of MITgcm run at |
159 |
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole |
160 |
(blue) and warm air along an equatorial band (red). Fully developed |
161 |
baroclinic eddies spawned in the northern hemisphere storm track are |
162 |
evident. There are no mountains or land-sea contrast in this calculation, |
163 |
but you can easily put them in. The model is driven by relaxation to a |
164 |
radiative-convective equilibrium profile, following the description set out |
165 |
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - |
166 |
there are no mountains or land-sea contrast. |
167 |
|
168 |
%% CNHbegin |
169 |
\input{part1/cubic_eddies_figure} |
170 |
%% CNHend |
171 |
|
172 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
173 |
globe permitting a uniform griding and obviated the need to Fourier filter. |
174 |
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
175 |
grid, of which the cubed sphere is just one of many choices. |
176 |
|
177 |
Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal |
178 |
wind from a 20-level configuration of |
179 |
the model. It compares favorable with more conventional spatial |
180 |
discretization approaches. The two plots show the field calculated using the |
181 |
cube-sphere grid and the flow calculated using a regular, spherical polar |
182 |
latitude-longitude grid. Both grids are supported within the model. |
183 |
|
184 |
%% CNHbegin |
185 |
\input{part1/hs_zave_u_figure} |
186 |
%% CNHend |
187 |
|
188 |
\subsection{Ocean gyres} |
189 |
|
190 |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
191 |
atmosphere. Ocean eddies play an important role in modifying the |
192 |
hydrographic structure and current systems of the oceans. Coarse resolution |
193 |
models of the oceans cannot resolve the eddy field and yield rather broad, |
194 |
diffusive patterns of ocean currents. But if the resolution of our models is |
195 |
increased until the baroclinic instability process is resolved, numerical |
196 |
solutions of a different and much more realistic kind, can be obtained. |
197 |
|
198 |
Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity |
199 |
field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal |
200 |
resolution on a $lat-lon$ |
201 |
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator |
202 |
(to avoid the converging of meridian in northern latitudes). 21 vertical |
203 |
levels are used in the vertical with a `lopped cell' representation of |
204 |
topography. The development and propagation of anomalously warm and cold |
205 |
eddies can be clearly seen in the Gulf Stream region. The transport of |
206 |
warm water northward by the mean flow of the Gulf Stream is also clearly |
207 |
visible. |
208 |
|
209 |
%% CNHbegin |
210 |
\input{part1/atl6_figure} |
211 |
%% CNHend |
212 |
|
213 |
|
214 |
\subsection{Global ocean circulation} |
215 |
|
216 |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
217 |
the surface of a 4$^{\circ }$ |
218 |
global ocean model run with 15 vertical levels. Lopped cells are used to |
219 |
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ |
220 |
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with |
221 |
mixed boundary conditions on temperature and salinity at the surface. The |
222 |
transfer properties of ocean eddies, convection and mixing is parameterized |
223 |
in this model. |
224 |
|
225 |
Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning |
226 |
circulation of the global ocean in Sverdrups. |
227 |
|
228 |
%%CNHbegin |
229 |
\input{part1/global_circ_figure} |
230 |
%%CNHend |
231 |
|
232 |
\subsection{Convection and mixing over topography} |
233 |
|
234 |
Dense plumes generated by localized cooling on the continental shelf of the |
235 |
ocean may be influenced by rotation when the deformation radius is smaller |
236 |
than the width of the cooling region. Rather than gravity plumes, the |
237 |
mechanism for moving dense fluid down the shelf is then through geostrophic |
238 |
eddies. The simulation shown in the figure \ref{fig:convect-and-topo} |
239 |
(blue is cold dense fluid, red is |
240 |
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
241 |
trigger convection by surface cooling. The cold, dense water falls down the |
242 |
slope but is deflected along the slope by rotation. It is found that |
243 |
entrainment in the vertical plane is reduced when rotational control is |
244 |
strong, and replaced by lateral entrainment due to the baroclinic |
245 |
instability of the along-slope current. |
246 |
|
247 |
%%CNHbegin |
248 |
\input{part1/convect_and_topo} |
249 |
%%CNHend |
250 |
|
251 |
\subsection{Boundary forced internal waves} |
252 |
|
253 |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
254 |
presence of complex geometry makes it an ideal tool to study internal wave |
255 |
dynamics and mixing in oceanic canyons and ridges driven by large amplitude |
256 |
barotropic tidal currents imposed through open boundary conditions. |
257 |
|
258 |
Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope |
259 |
topographic variations on |
260 |
internal wave breaking - the cross-slope velocity is in color, the density |
261 |
contoured. The internal waves are excited by application of open boundary |
262 |
conditions on the left. They propagate to the sloping boundary (represented |
263 |
using MITgcm's finite volume spatial discretization) where they break under |
264 |
nonhydrostatic dynamics. |
265 |
|
266 |
%%CNHbegin |
267 |
\input{part1/boundary_forced_waves} |
268 |
%%CNHend |
269 |
|
270 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
271 |
|
272 |
Forward and tangent linear counterparts of MITgcm are supported using an |
273 |
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
274 |
data assimilation studies. |
275 |
|
276 |
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} |
277 |
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
278 |
of the overturning stream-function shown in figure \ref{fig:large-scale-circ} |
279 |
at 60$^{\circ }$N and $ |
280 |
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over |
281 |
a 100 year period. We see that $J$ is |
282 |
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
283 |
of deep water for the thermohaline circulations. This calculation also |
284 |
yields sensitivities to all other model parameters. |
285 |
|
286 |
%%CNHbegin |
287 |
\input{part1/adj_hf_ocean_figure} |
288 |
%%CNHend |
289 |
|
290 |
\subsection{Global state estimation of the ocean} |
291 |
|
292 |
An important application of MITgcm is in state estimation of the global |
293 |
ocean circulation. An appropriately defined `cost function', which measures |
294 |
the departure of the model from observations (both remotely sensed and |
295 |
in-situ) over an interval of time, is minimized by adjusting `control |
296 |
parameters' such as air-sea fluxes, the wind field, the initial conditions |
297 |
etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean |
298 |
surface elevation of the ocean obtained by bringing the model in to |
299 |
consistency with altimetric and in-situ observations over the period |
300 |
1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} |
301 |
|
302 |
%% CNHbegin |
303 |
\input{part1/assim_figure} |
304 |
%% CNHend |
305 |
|
306 |
\subsection{Ocean biogeochemical cycles} |
307 |
|
308 |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
309 |
example one can study the effects of interannual changes in meteorological |
310 |
forcing and upper ocean circulation on the fluxes of carbon dioxide and |
311 |
oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows |
312 |
the annual air-sea flux of oxygen and its relation to density outcrops in |
313 |
the southern oceans from a single year of a global, interannually varying |
314 |
simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution |
315 |
telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown). |
316 |
|
317 |
%%CNHbegin |
318 |
\input{part1/biogeo_figure} |
319 |
%%CNHend |
320 |
|
321 |
\subsection{Simulations of laboratory experiments} |
322 |
|
323 |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
324 |
laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
325 |
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
326 |
free surface by a rotating heated disk. The combined action of mechanical |
327 |
and thermal forcing creates a lens of fluid which becomes baroclinically |
328 |
unstable. The stratification and depth of penetration of the lens is |
329 |
arrested by its instability in a process analogous to that which sets the |
330 |
stratification of the ACC. |
331 |
|
332 |
%%CNHbegin |
333 |
\input{part1/lab_figure} |
334 |
%%CNHend |
335 |
|
336 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
337 |
% $Name: $ |
338 |
|
339 |
\section{Continuous equations in `r' coordinates} |
340 |
|
341 |
To render atmosphere and ocean models from one dynamical core we exploit |
342 |
`isomorphisms' between equation sets that govern the evolution of the |
343 |
respective fluids - see figure \ref{fig:isomorphic-equations}. |
344 |
One system of hydrodynamical equations is written down |
345 |
and encoded. The model variables have different interpretations depending on |
346 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
347 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
348 |
modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) |
349 |
and height, $z$, if we are modeling the ocean (right hand side of figure |
350 |
\ref{fig:isomorphic-equations}). |
351 |
|
352 |
%%CNHbegin |
353 |
\input{part1/zandpcoord_figure.tex} |
354 |
%%CNHend |
355 |
|
356 |
The state of the fluid at any time is characterized by the distribution of |
357 |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
358 |
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
359 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
360 |
of these fields, obtained by applying the laws of classical mechanics and |
361 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
362 |
a generic vertical coordinate, $r$, so that the appropriate |
363 |
kinematic boundary conditions can be applied isomorphically |
364 |
see figure \ref{fig:zandp-vert-coord}. |
365 |
|
366 |
%%CNHbegin |
367 |
\input{part1/vertcoord_figure.tex} |
368 |
%%CNHend |
369 |
|
370 |
\begin{equation*} |
371 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
372 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
373 |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
374 |
\end{equation*} |
375 |
|
376 |
\begin{equation} |
377 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
378 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
379 |
vertical mtm} \label{eq:vertical_mtm} |
380 |
\end{equation} |
381 |
|
382 |
\begin{equation} |
383 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
384 |
\partial r}=0\text{ continuity} \label{eq:continuity} |
385 |
\end{equation} |
386 |
|
387 |
\begin{equation} |
388 |
b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state} |
389 |
\end{equation} |
390 |
|
391 |
\begin{equation} |
392 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
393 |
\label{eq:potential_temperature} |
394 |
\end{equation} |
395 |
|
396 |
\begin{equation} |
397 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
398 |
\label{eq:humidity_salt} |
399 |
\end{equation} |
400 |
|
401 |
Here: |
402 |
|
403 |
\begin{equation*} |
404 |
r\text{ is the vertical coordinate} |
405 |
\end{equation*} |
406 |
|
407 |
\begin{equation*} |
408 |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
409 |
is the total derivative} |
410 |
\end{equation*} |
411 |
|
412 |
\begin{equation*} |
413 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
414 |
\text{ is the `grad' operator} |
415 |
\end{equation*} |
416 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
417 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
418 |
is a unit vector in the vertical |
419 |
|
420 |
\begin{equation*} |
421 |
t\text{ is time} |
422 |
\end{equation*} |
423 |
|
424 |
\begin{equation*} |
425 |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
426 |
velocity} |
427 |
\end{equation*} |
428 |
|
429 |
\begin{equation*} |
430 |
\phi \text{ is the `pressure'/`geopotential'} |
431 |
\end{equation*} |
432 |
|
433 |
\begin{equation*} |
434 |
\vec{\Omega}\text{ is the Earth's rotation} |
435 |
\end{equation*} |
436 |
|
437 |
\begin{equation*} |
438 |
b\text{ is the `buoyancy'} |
439 |
\end{equation*} |
440 |
|
441 |
\begin{equation*} |
442 |
\theta \text{ is potential temperature} |
443 |
\end{equation*} |
444 |
|
445 |
\begin{equation*} |
446 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
447 |
\end{equation*} |
448 |
|
449 |
\begin{equation*} |
450 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ |
451 |
\mathbf{v}} |
452 |
\end{equation*} |
453 |
|
454 |
\begin{equation*} |
455 |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta |
456 |
\end{equation*} |
457 |
|
458 |
\begin{equation*} |
459 |
\mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S |
460 |
\end{equation*} |
461 |
|
462 |
The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by |
463 |
`physics' and forcing packages for atmosphere and ocean. These are described |
464 |
in later chapters. |
465 |
|
466 |
\subsection{Kinematic Boundary conditions} |
467 |
|
468 |
\subsubsection{vertical} |
469 |
|
470 |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
471 |
|
472 |
\begin{equation} |
473 |
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
474 |
\label{eq:fixedbc} |
475 |
\end{equation} |
476 |
|
477 |
\begin{equation} |
478 |
\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ |
479 |
(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} |
480 |
\end{equation} |
481 |
|
482 |
Here |
483 |
|
484 |
\begin{equation*} |
485 |
R_{moving}=R_{o}+\eta |
486 |
\end{equation*} |
487 |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
488 |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
489 |
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence |
490 |
of motion. |
491 |
|
492 |
\subsubsection{horizontal} |
493 |
|
494 |
\begin{equation} |
495 |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
496 |
\end{equation} |
497 |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
498 |
|
499 |
\subsection{Atmosphere} |
500 |
|
501 |
In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret: |
502 |
|
503 |
\begin{equation} |
504 |
r=p\text{ is the pressure} \label{eq:atmos-r} |
505 |
\end{equation} |
506 |
|
507 |
\begin{equation} |
508 |
\dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ |
509 |
coordinates} \label{eq:atmos-omega} |
510 |
\end{equation} |
511 |
|
512 |
\begin{equation} |
513 |
\phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi} |
514 |
\end{equation} |
515 |
|
516 |
\begin{equation} |
517 |
b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} |
518 |
\label{eq:atmos-b} |
519 |
\end{equation} |
520 |
|
521 |
\begin{equation} |
522 |
\theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} |
523 |
\label{eq:atmos-theta} |
524 |
\end{equation} |
525 |
|
526 |
\begin{equation} |
527 |
S=q,\text{ is the specific humidity} \label{eq:atmos-s} |
528 |
\end{equation} |
529 |
where |
530 |
|
531 |
\begin{equation*} |
532 |
T\text{ is absolute temperature} |
533 |
\end{equation*} |
534 |
\begin{equation*} |
535 |
p\text{ is the pressure} |
536 |
\end{equation*} |
537 |
\begin{eqnarray*} |
538 |
&&z\text{ is the height of the pressure surface} \\ |
539 |
&&g\text{ is the acceleration due to gravity} |
540 |
\end{eqnarray*} |
541 |
|
542 |
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of |
543 |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
544 |
\begin{equation} |
545 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
546 |
\end{equation} |
547 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
548 |
constant and $c_{p}$ the specific heat of air at constant pressure. |
549 |
|
550 |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
551 |
|
552 |
\begin{equation*} |
553 |
R_{fixed}=p_{top}=0 |
554 |
\end{equation*} |
555 |
In a resting atmosphere the elevation of the mountains at the bottom is |
556 |
given by |
557 |
\begin{equation*} |
558 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
559 |
\end{equation*} |
560 |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
561 |
atmosphere. |
562 |
|
563 |
The boundary conditions at top and bottom are given by: |
564 |
|
565 |
\begin{eqnarray} |
566 |
&&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)} |
567 |
\label{eq:fixed-bc-atmos} \\ |
568 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
569 |
atmosphere)} \label{eq:moving-bc-atmos} |
570 |
\end{eqnarray} |
571 |
|
572 |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) |
573 |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
574 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
575 |
|
576 |
\subsection{Ocean} |
577 |
|
578 |
In the ocean we interpret: |
579 |
\begin{eqnarray} |
580 |
r &=&z\text{ is the height} \label{eq:ocean-z} \\ |
581 |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
582 |
\label{eq:ocean-w} \\ |
583 |
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\ |
584 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
585 |
_{c}\right) \text{ is the buoyancy} \label{eq:ocean-b} |
586 |
\end{eqnarray} |
587 |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
588 |
acceleration due to gravity.\noindent |
589 |
|
590 |
In the above |
591 |
|
592 |
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. |
593 |
|
594 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
595 |
|
596 |
The position of the resting free surface of the ocean is given by $ |
597 |
R_{o}=Z_{o}=0$. |
598 |
|
599 |
Boundary conditions are: |
600 |
|
601 |
\begin{eqnarray} |
602 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
603 |
\\ |
604 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
605 |
\label{eq:moving-bc-ocean}} |
606 |
\end{eqnarray} |
607 |
where $\eta $ is the elevation of the free surface. |
608 |
|
609 |
Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set |
610 |
of oceanic equations |
611 |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
612 |
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
613 |
|
614 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
615 |
Non-hydrostatic forms} |
616 |
|
617 |
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
618 |
|
619 |
\begin{equation} |
620 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
621 |
\label{eq:phi-split} |
622 |
\end{equation} |
623 |
and write eq(\ref{eq:incompressible}) in the form: |
624 |
|
625 |
\begin{equation} |
626 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
627 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
628 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
629 |
\end{equation} |
630 |
|
631 |
\begin{equation} |
632 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
633 |
\end{equation} |
634 |
|
635 |
\begin{equation} |
636 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
637 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
638 |
\end{equation} |
639 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
640 |
|
641 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
642 |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
643 |
terms in the momentum equations. In spherical coordinates they take the form |
644 |
\footnote{ |
645 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
646 |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref |
647 |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
648 |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( |
649 |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
650 |
discussion: |
651 |
|
652 |
\begin{equation} |
653 |
\left. |
654 |
\begin{tabular}{l} |
655 |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
656 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ |
657 |
\\ |
658 |
$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ |
659 |
\\ |
660 |
$+\mathcal{F}_{u}$ |
661 |
\end{tabular} |
662 |
\ \right\} \left\{ |
663 |
\begin{tabular}{l} |
664 |
\textit{advection} \\ |
665 |
\textit{metric} \\ |
666 |
\textit{Coriolis} \\ |
667 |
\textit{\ Forcing/Dissipation} |
668 |
\end{tabular} |
669 |
\ \right. \qquad \label{eq:gu-speherical} |
670 |
\end{equation} |
671 |
|
672 |
\begin{equation} |
673 |
\left. |
674 |
\begin{tabular}{l} |
675 |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
676 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} |
677 |
$ \\ |
678 |
$-\left\{ -2\Omega u\sin \varphi \right\} $ \\ |
679 |
$+\mathcal{F}_{v}$ |
680 |
\end{tabular} |
681 |
\ \right\} \left\{ |
682 |
\begin{tabular}{l} |
683 |
\textit{advection} \\ |
684 |
\textit{metric} \\ |
685 |
\textit{Coriolis} \\ |
686 |
\textit{\ Forcing/Dissipation} |
687 |
\end{tabular} |
688 |
\ \right. \qquad \label{eq:gv-spherical} |
689 |
\end{equation} |
690 |
\qquad \qquad \qquad \qquad \qquad |
691 |
|
692 |
\begin{equation} |
693 |
\left. |
694 |
\begin{tabular}{l} |
695 |
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
696 |
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
697 |
${+}\underline{{2\Omega u\cos \varphi}}$ \\ |
698 |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$ |
699 |
\end{tabular} |
700 |
\ \right\} \left\{ |
701 |
\begin{tabular}{l} |
702 |
\textit{advection} \\ |
703 |
\textit{metric} \\ |
704 |
\textit{Coriolis} \\ |
705 |
\textit{\ Forcing/Dissipation} |
706 |
\end{tabular} |
707 |
\ \right. \label{eq:gw-spherical} |
708 |
\end{equation} |
709 |
\qquad \qquad \qquad \qquad \qquad |
710 |
|
711 |
In the above `${r}$' is the distance from the center of the earth and `$\varphi$ |
712 |
' is latitude. |
713 |
|
714 |
Grad and div operators in spherical coordinates are defined in appendix |
715 |
OPERATORS. |
716 |
|
717 |
%%CNHbegin |
718 |
\input{part1/sphere_coord_figure.tex} |
719 |
%%CNHend |
720 |
|
721 |
\subsubsection{Shallow atmosphere approximation} |
722 |
|
723 |
Most models are based on the `hydrostatic primitive equations' (HPE's) in |
724 |
which the vertical momentum equation is reduced to a statement of |
725 |
hydrostatic balance and the `traditional approximation' is made in which the |
726 |
Coriolis force is treated approximately and the shallow atmosphere |
727 |
approximation is made.\ The MITgcm need not make the `traditional |
728 |
approximation'. To be able to support consistent non-hydrostatic forms the |
729 |
shallow atmosphere approximation can be relaxed - when dividing through by $ |
730 |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
731 |
the radius of the earth. |
732 |
|
733 |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
734 |
\label{sec:hydrostatic_and_quasi-hydrostatic_forms} |
735 |
|
736 |
These are discussed at length in Marshall et al (1997a). |
737 |
|
738 |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
739 |
terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) |
740 |
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
741 |
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
742 |
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
743 |
computed at all other levels by integration of the hydrostatic relation, eq( |
744 |
\ref{eq:hydrostatic}). |
745 |
|
746 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
747 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
748 |
\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
749 |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
750 |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
751 |
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
752 |
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
753 |
variation of the radial position of a particle monitored. The \textbf{QH}\ |
754 |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
755 |
|
756 |
\begin{equation*} |
757 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi |
758 |
\end{equation*} |
759 |
making a small correction to the hydrostatic pressure. |
760 |
|
761 |
\textbf{QH} has good energetic credentials - they are the same as for |
762 |
\textbf{HPE}. Importantly, however, it has the same angular momentum |
763 |
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall |
764 |
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. |
765 |
|
766 |
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} |
767 |
|
768 |
The MIT model presently supports a full non-hydrostatic ocean isomorph, but |
769 |
only a quasi-non-hydrostatic atmospheric isomorph. |
770 |
|
771 |
\paragraph{Non-hydrostatic Ocean} |
772 |
|
773 |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref |
774 |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
775 |
three dimensional elliptic equation must be solved subject to Neumann |
776 |
boundary conditions (see below). It is important to note that use of the |
777 |
full \textbf{NH} does not admit any new `fast' waves in to the system - the |
778 |
incompressible condition eq(\ref{eq:continuity}) has already filtered out |
779 |
acoustic modes. It does, however, ensure that the gravity waves are treated |
780 |
accurately with an exact dispersion relation. The \textbf{NH} set has a |
781 |
complete angular momentum principle and consistent energetics - see White |
782 |
and Bromley, 1995; Marshall et.al.\ 1997a. |
783 |
|
784 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
785 |
|
786 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
787 |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
788 |
(but only here) by: |
789 |
|
790 |
\begin{equation} |
791 |
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
792 |
\end{equation} |
793 |
where $p_{hy}$ is the hydrostatic pressure. |
794 |
|
795 |
\subsubsection{Summary of equation sets supported by model} |
796 |
|
797 |
\paragraph{Atmosphere} |
798 |
|
799 |
Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the |
800 |
compressible non-Boussinesq equations in $p-$coordinates are supported. |
801 |
|
802 |
\subparagraph{Hydrostatic and quasi-hydrostatic} |
803 |
|
804 |
The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere |
805 |
- see eq(\ref{eq:atmos-prime}). |
806 |
|
807 |
\subparagraph{Quasi-nonhydrostatic} |
808 |
|
809 |
A quasi-nonhydrostatic form is also supported. |
810 |
|
811 |
\paragraph{Ocean} |
812 |
|
813 |
\subparagraph{Hydrostatic and quasi-hydrostatic} |
814 |
|
815 |
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq |
816 |
equations in $z-$coordinates are supported. |
817 |
|
818 |
\subparagraph{Non-hydrostatic} |
819 |
|
820 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
821 |
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref |
822 |
{eq:ocean-salt}). |
823 |
|
824 |
\subsection{Solution strategy} |
825 |
|
826 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
827 |
NH} models is summarized in Figure \ref{fig:solution-strategy}. |
828 |
Under all dynamics, a 2-d elliptic equation is |
829 |
first solved to find the surface pressure and the hydrostatic pressure at |
830 |
any level computed from the weight of fluid above. Under \textbf{HPE} and |
831 |
\textbf{QH} dynamics, the horizontal momentum equations are then stepped |
832 |
forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a |
833 |
3-d elliptic equation must be solved for the non-hydrostatic pressure before |
834 |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
835 |
stepping forward the vertical momentum equation. |
836 |
|
837 |
%%CNHbegin |
838 |
\input{part1/solution_strategy_figure.tex} |
839 |
%%CNHend |
840 |
|
841 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
842 |
course, some complication that goes with the inclusion of $\cos \varphi \ $ |
843 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
844 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
845 |
contrast, one additional elliptic equation - a three-dimensional one - must |
846 |
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is |
847 |
essentially negligible in the hydrostatic limit (see detailed discussion in |
848 |
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the |
849 |
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
850 |
|
851 |
\subsection{Finding the pressure field} |
852 |
\label{sec:finding_the_pressure_field} |
853 |
|
854 |
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
855 |
pressure field must be obtained diagnostically. We proceed, as before, by |
856 |
dividing the total (pressure/geo) potential in to three parts, a surface |
857 |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
858 |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and |
859 |
writing the momentum equation as in (\ref{eq:mom-h}). |
860 |
|
861 |
\subsubsection{Hydrostatic pressure} |
862 |
|
863 |
Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic}) |
864 |
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
865 |
|
866 |
\begin{equation*} |
867 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} |
868 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
869 |
\end{equation*} |
870 |
and so |
871 |
|
872 |
\begin{equation} |
873 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi} |
874 |
\end{equation} |
875 |
|
876 |
The model can be easily modified to accommodate a loading term (e.g |
877 |
atmospheric pressure pushing down on the ocean's surface) by setting: |
878 |
|
879 |
\begin{equation} |
880 |
\phi _{hyd}(r=R_{o})=loading \label{eq:loading} |
881 |
\end{equation} |
882 |
|
883 |
\subsubsection{Surface pressure} |
884 |
|
885 |
The surface pressure equation can be obtained by integrating continuity, |
886 |
(\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
887 |
|
888 |
\begin{equation*} |
889 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
890 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
891 |
\end{equation*} |
892 |
|
893 |
Thus: |
894 |
|
895 |
\begin{equation*} |
896 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
897 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
898 |
_{h}dr=0 |
899 |
\end{equation*} |
900 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
901 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
902 |
|
903 |
\begin{equation} |
904 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
905 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
906 |
\label{eq:free-surface} |
907 |
\end{equation} |
908 |
where we have incorporated a source term. |
909 |
|
910 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
911 |
(atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can |
912 |
be written |
913 |
\begin{equation} |
914 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
915 |
\label{eq:phi-surf} |
916 |
\end{equation} |
917 |
where $b_{s}$ is the buoyancy at the surface. |
918 |
|
919 |
In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref |
920 |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
921 |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
922 |
surface' and `rigid lid' approaches are available. |
923 |
|
924 |
\subsubsection{Non-hydrostatic pressure} |
925 |
|
926 |
Taking the horizontal divergence of (\ref{eq:mom-h}) and adding |
927 |
$\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation |
928 |
(\ref{eq:continuity}), we deduce that: |
929 |
|
930 |
\begin{equation} |
931 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
932 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
933 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
934 |
\end{equation} |
935 |
|
936 |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
937 |
subject to appropriate choice of boundary conditions. This method is usually |
938 |
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; |
939 |
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), |
940 |
the 3-d problem does not need to be solved. |
941 |
|
942 |
\paragraph{Boundary Conditions} |
943 |
|
944 |
We apply the condition of no normal flow through all solid boundaries - the |
945 |
coasts (in the ocean) and the bottom: |
946 |
|
947 |
\begin{equation} |
948 |
\vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow} |
949 |
\end{equation} |
950 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
951 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
952 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
953 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
954 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
955 |
depending on the form chosen for the dissipative terms in the momentum |
956 |
equations - see below. |
957 |
|
958 |
Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that: |
959 |
|
960 |
\begin{equation} |
961 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
962 |
\label{eq:inhom-neumann-nh} |
963 |
\end{equation} |
964 |
where |
965 |
|
966 |
\begin{equation*} |
967 |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
968 |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
969 |
\end{equation*} |
970 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
971 |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
972 |
exploit classical 3D potential theory and, by introducing an appropriately |
973 |
chosen $\delta $-function sheet of `source-charge', replace the |
974 |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
975 |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ |
976 |
\vec{\mathbf{F}}.$ By simultaneously setting $ |
977 |
\begin{array}{l} |
978 |
\widehat{n}.\vec{\mathbf{F}} |
979 |
\end{array} |
980 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
981 |
self-consistent but simpler homogenized Elliptic problem is obtained: |
982 |
|
983 |
\begin{equation*} |
984 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
985 |
\end{equation*} |
986 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
987 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
988 |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
989 |
|
990 |
\begin{equation} |
991 |
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
992 |
\end{equation} |
993 |
|
994 |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
995 |
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
996 |
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
997 |
|
998 |
The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh}) |
999 |
does not vanish at $r=R_{moving}$, and so refines the pressure there. |
1000 |
|
1001 |
\subsection{Forcing/dissipation} |
1002 |
|
1003 |
\subsubsection{Forcing} |
1004 |
|
1005 |
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
1006 |
`physics packages' and forcing packages. These are described later on. |
1007 |
|
1008 |
\subsubsection{Dissipation} |
1009 |
|
1010 |
\paragraph{Momentum} |
1011 |
|
1012 |
Many forms of momentum dissipation are available in the model. Laplacian and |
1013 |
biharmonic frictions are commonly used: |
1014 |
|
1015 |
\begin{equation} |
1016 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
1017 |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
1018 |
\end{equation} |
1019 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
1020 |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
1021 |
friction. These coefficients are the same for all velocity components. |
1022 |
|
1023 |
\paragraph{Tracers} |
1024 |
|
1025 |
The mixing terms for the temperature and salinity equations have a similar |
1026 |
form to that of momentum except that the diffusion tensor can be |
1027 |
non-diagonal and have varying coefficients. $\qquad $ |
1028 |
\begin{equation} |
1029 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
1030 |
_{h}^{4}(T,S) \label{eq:diffusion} |
1031 |
\end{equation} |
1032 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
1033 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
1034 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
1035 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
1036 |
reduces to a diagonal matrix with constant coefficients: |
1037 |
|
1038 |
\begin{equation} |
1039 |
\qquad \qquad \qquad \qquad K=\left( |
1040 |
\begin{array}{ccc} |
1041 |
K_{h} & 0 & 0 \\ |
1042 |
0 & K_{h} & 0 \\ |
1043 |
0 & 0 & K_{v} |
1044 |
\end{array} |
1045 |
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
1046 |
\end{equation} |
1047 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
1048 |
coefficients. These coefficients are the same for all tracers (temperature, |
1049 |
salinity ... ). |
1050 |
|
1051 |
\subsection{Vector invariant form} |
1052 |
|
1053 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
1054 |
{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: |
1055 |
|
1056 |
\begin{equation} |
1057 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
1058 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
1059 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
1060 |
\label{eq:vi-identity} |
1061 |
\end{equation} |
1062 |
This permits alternative numerical treatments of the non-linear terms based |
1063 |
on their representation as a vorticity flux. Because gradients of coordinate |
1064 |
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
1065 |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref |
1066 |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
1067 |
about the geometry is contained in the areas and lengths of the volumes used |
1068 |
to discretize the model. |
1069 |
|
1070 |
\subsection{Adjoint} |
1071 |
|
1072 |
Tangent linear and adjoint counterparts of the forward model are described |
1073 |
in Chapter 5. |
1074 |
|
1075 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
1076 |
% $Name: $ |
1077 |
|
1078 |
\section{Appendix ATMOSPHERE} |
1079 |
|
1080 |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
1081 |
coordinates} |
1082 |
|
1083 |
\label{sect-hpe-p} |
1084 |
|
1085 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
1086 |
\begin{eqnarray} |
1087 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1088 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
1089 |
\label{eq:atmos-mom} \\ |
1090 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
1091 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
1092 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
1093 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
1094 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
1095 |
\end{eqnarray} |
1096 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
1097 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
1098 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
1099 |
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is |
1100 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
1101 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
1102 |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
1103 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
1104 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
1105 |
|
1106 |
It is convenient to cast the heat equation in terms of potential temperature |
1107 |
$\theta $ so that it looks more like a generic conservation law. |
1108 |
Differentiating (\ref{eq:atmos-eos}) we get: |
1109 |
\begin{equation*} |
1110 |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
1111 |
\end{equation*} |
1112 |
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ |
1113 |
c_{p}=c_{v}+R$, gives: |
1114 |
\begin{equation} |
1115 |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
1116 |
\label{eq-p-heat-interim} |
1117 |
\end{equation} |
1118 |
Potential temperature is defined: |
1119 |
\begin{equation} |
1120 |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
1121 |
\end{equation} |
1122 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
1123 |
we will make use of the Exner function $\Pi (p)$ which defined by: |
1124 |
\begin{equation} |
1125 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
1126 |
\end{equation} |
1127 |
The following relations will be useful and are easily expressed in terms of |
1128 |
the Exner function: |
1129 |
\begin{equation*} |
1130 |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
1131 |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ |
1132 |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} |
1133 |
\frac{Dp}{Dt} |
1134 |
\end{equation*} |
1135 |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
1136 |
|
1137 |
The heat equation is obtained by noting that |
1138 |
\begin{equation*} |
1139 |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
1140 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
1141 |
\end{equation*} |
1142 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
1143 |
\begin{equation} |
1144 |
\Pi \frac{D\theta }{Dt}=\mathcal{Q} |
1145 |
\label{eq:potential-temperature-equation} |
1146 |
\end{equation} |
1147 |
which is in conservative form. |
1148 |
|
1149 |
For convenience in the model we prefer to step forward (\ref |
1150 |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
1151 |
|
1152 |
\subsubsection{Boundary conditions} |
1153 |
|
1154 |
The upper and lower boundary conditions are : |
1155 |
\begin{eqnarray} |
1156 |
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
1157 |
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
1158 |
\label{eq:boundary-condition-atmosphere} |
1159 |
\end{eqnarray} |
1160 |
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
1161 |
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
1162 |
surface ($\phi $ is imposed and $\omega \neq 0$). |
1163 |
|
1164 |
\subsubsection{Splitting the geo-potential} |
1165 |
|
1166 |
For the purposes of initialization and reducing round-off errors, the model |
1167 |
deals with perturbations from reference (or ``standard'') profiles. For |
1168 |
example, the hydrostatic geopotential associated with the resting atmosphere |
1169 |
is not dynamically relevant and can therefore be subtracted from the |
1170 |
equations. The equations written in terms of perturbations are obtained by |
1171 |
substituting the following definitions into the previous model equations: |
1172 |
\begin{eqnarray} |
1173 |
\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ |
1174 |
\alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\ |
1175 |
\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} |
1176 |
\end{eqnarray} |
1177 |
The reference state (indicated by subscript ``0'') corresponds to |
1178 |
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
1179 |
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
1180 |
_{o}(p_{o})=g~Z_{topo}$, defined: |
1181 |
\begin{eqnarray*} |
1182 |
\theta _{o}(p) &=&f^{n}(p) \\ |
1183 |
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ |
1184 |
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp |
1185 |
\end{eqnarray*} |
1186 |
%\begin{eqnarray*} |
1187 |
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ |
1188 |
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp |
1189 |
%\end{eqnarray*} |
1190 |
|
1191 |
The final form of the HPE's in p coordinates is then: |
1192 |
\begin{eqnarray} |
1193 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1194 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ |
1195 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
1196 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
1197 |
\partial p} &=&0 \\ |
1198 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
1199 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
1200 |
\end{eqnarray} |
1201 |
|
1202 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
1203 |
% $Name: $ |
1204 |
|
1205 |
\section{Appendix OCEAN} |
1206 |
|
1207 |
\subsection{Equations of motion for the ocean} |
1208 |
|
1209 |
We review here the method by which the standard (Boussinesq, incompressible) |
1210 |
HPE's for the ocean written in z-coordinates are obtained. The |
1211 |
non-Boussinesq equations for oceanic motion are: |
1212 |
\begin{eqnarray} |
1213 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1214 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
1215 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
1216 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
1217 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
1218 |
_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\ |
1219 |
\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\ |
1220 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\ |
1221 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt} |
1222 |
\label{eq:non-boussinesq} |
1223 |
\end{eqnarray} |
1224 |
These equations permit acoustics modes, inertia-gravity waves, |
1225 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline |
1226 |
mode. As written, they cannot be integrated forward consistently - if we |
1227 |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
1228 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
1229 |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
1230 |
therefore necessary to manipulate the system as follows. Differentiating the |
1231 |
EOS (equation of state) gives: |
1232 |
|
1233 |
\begin{equation} |
1234 |
\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right| |
1235 |
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right| |
1236 |
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right| |
1237 |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
1238 |
\end{equation} |
1239 |
|
1240 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
1241 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: |
1242 |
\begin{equation} |
1243 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
1244 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
1245 |
\end{equation} |
1246 |
where we have used an approximation sign to indicate that we have assumed |
1247 |
adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$. |
1248 |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
1249 |
can be explicitly integrated forward: |
1250 |
\begin{eqnarray} |
1251 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1252 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
1253 |
\label{eq-cns-hmom} \\ |
1254 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
1255 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
1256 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
1257 |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
1258 |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
1259 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
1260 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt} |
1261 |
\end{eqnarray} |
1262 |
|
1263 |
\subsubsection{Compressible z-coordinate equations} |
1264 |
|
1265 |
Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$ |
1266 |
wherever it appears in a product (ie. non-linear term) - this is the |
1267 |
`Boussinesq assumption'. The only term that then retains the full variation |
1268 |
in $\rho $ is the gravitational acceleration: |
1269 |
\begin{eqnarray} |
1270 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1271 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
1272 |
\label{eq-zcb-hmom} \\ |
1273 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
1274 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
1275 |
\label{eq-zcb-hydro} \\ |
1276 |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ |
1277 |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
1278 |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
1279 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
1280 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
1281 |
\end{eqnarray} |
1282 |
These equations still retain acoustic modes. But, because the |
1283 |
``compressible'' terms are linearized, the pressure equation \ref |
1284 |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
1285 |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
1286 |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
1287 |
EOS must have the same pressure dependency as the linearized pressure term, |
1288 |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ |
1289 |
c_{s}^{2}}$, for consistency. |
1290 |
|
1291 |
\subsubsection{`Anelastic' z-coordinate equations} |
1292 |
|
1293 |
The anelastic approximation filters the acoustic mode by removing the |
1294 |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} |
1295 |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} |
1296 |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
1297 |
continuity and EOS. A better solution is to change the dependency on |
1298 |
pressure in the EOS by splitting the pressure into a reference function of |
1299 |
height and a perturbation: |
1300 |
\begin{equation*} |
1301 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
1302 |
\end{equation*} |
1303 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
1304 |
differentiating the EOS, the continuity equation then becomes: |
1305 |
\begin{equation*} |
1306 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ |
1307 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ |
1308 |
\frac{\partial w}{\partial z}=0 |
1309 |
\end{equation*} |
1310 |
If the time- and space-scales of the motions of interest are longer than |
1311 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, |
1312 |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
1313 |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ |
1314 |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
1315 |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
1316 |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
1317 |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
1318 |
anelastic continuity equation: |
1319 |
\begin{equation} |
1320 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- |
1321 |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
1322 |
\end{equation} |
1323 |
A slightly different route leads to the quasi-Boussinesq continuity equation |
1324 |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ |
1325 |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } |
1326 |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
1327 |
\begin{equation} |
1328 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
1329 |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
1330 |
\end{equation} |
1331 |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
1332 |
equation if: |
1333 |
\begin{equation} |
1334 |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
1335 |
\end{equation} |
1336 |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
1337 |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ |
1338 |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
1339 |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
1340 |
then: |
1341 |
\begin{eqnarray} |
1342 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1343 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
1344 |
\label{eq-zab-hmom} \\ |
1345 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
1346 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
1347 |
\label{eq-zab-hydro} \\ |
1348 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
1349 |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
1350 |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
1351 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
1352 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt} |
1353 |
\end{eqnarray} |
1354 |
|
1355 |
\subsubsection{Incompressible z-coordinate equations} |
1356 |
|
1357 |
Here, the objective is to drop the depth dependence of $\rho _{o}$ and so, |
1358 |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
1359 |
yield the ``truly'' incompressible Boussinesq equations: |
1360 |
\begin{eqnarray} |
1361 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1362 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
1363 |
\label{eq-ztb-hmom} \\ |
1364 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} |
1365 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
1366 |
\label{eq-ztb-hydro} \\ |
1367 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
1368 |
&=&0 \label{eq-ztb-cont} \\ |
1369 |
\rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\ |
1370 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\ |
1371 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt} |
1372 |
\end{eqnarray} |
1373 |
where $\rho _{c}$ is a constant reference density of water. |
1374 |
|
1375 |
\subsubsection{Compressible non-divergent equations} |
1376 |
|
1377 |
The above ``incompressible'' equations are incompressible in both the flow |
1378 |
and the density. In many oceanic applications, however, it is important to |
1379 |
retain compressibility effects in the density. To do this we must split the |
1380 |
density thus: |
1381 |
\begin{equation*} |
1382 |
\rho =\rho _{o}+\rho ^{\prime } |
1383 |
\end{equation*} |
1384 |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
1385 |
while the compressible effects in $\rho ^{\prime }$ are: |
1386 |
\begin{equation*} |
1387 |
\rho _{o}=\rho _{c} |
1388 |
\end{equation*} |
1389 |
\begin{equation*} |
1390 |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
1391 |
\end{equation*} |
1392 |
This then yields what we can call the semi-compressible Boussinesq |
1393 |
equations: |
1394 |
\begin{eqnarray} |
1395 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1396 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ |
1397 |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
1398 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
1399 |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
1400 |
\label{eq:ocean-wmom} \\ |
1401 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
1402 |
&=&0 \label{eq:ocean-cont} \\ |
1403 |
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos} |
1404 |
\\ |
1405 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
1406 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
1407 |
\end{eqnarray} |
1408 |
Note that the hydrostatic pressure of the resting fluid, including that |
1409 |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
1410 |
dynamics. |
1411 |
|
1412 |
Though necessary, the assumptions that go into these equations are messy |
1413 |
since we essentially assume a different EOS for the reference density and |
1414 |
the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon |
1415 |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
1416 |
community and referred to as the primitive equations (HPE). |
1417 |
|
1418 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $ |
1419 |
% $Name: $ |
1420 |
|
1421 |
\section{Appendix:OPERATORS} |
1422 |
|
1423 |
\subsection{Coordinate systems} |
1424 |
|
1425 |
\subsubsection{Spherical coordinates} |
1426 |
|
1427 |
In spherical coordinates, the velocity components in the zonal, meridional |
1428 |
and vertical direction respectively, are given by (see Fig.2) : |
1429 |
|
1430 |
\begin{equation*} |
1431 |
u=r\cos \varphi \frac{D\lambda }{Dt} |
1432 |
\end{equation*} |
1433 |
|
1434 |
\begin{equation*} |
1435 |
v=r\frac{D\varphi }{Dt}\qquad |
1436 |
\end{equation*} |
1437 |
$\qquad \qquad \qquad \qquad $ |
1438 |
|
1439 |
\begin{equation*} |
1440 |
\dot{r}=\frac{Dr}{Dt} |
1441 |
\end{equation*} |
1442 |
|
1443 |
Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
1444 |
distance of the particle from the center of the earth, $\Omega $ is the |
1445 |
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. |
1446 |
|
1447 |
The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in |
1448 |
spherical coordinates: |
1449 |
|
1450 |
\begin{equation*} |
1451 |
\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } |
1452 |
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} |
1453 |
\right) |
1454 |
\end{equation*} |
1455 |
|
1456 |
\begin{equation*} |
1457 |
\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial |
1458 |
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} |
1459 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
1460 |
\end{equation*} |
1461 |
|
1462 |
%tci%\end{document} |