/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (show annotations) (download) (as text)
Mon Nov 19 19:58:20 2001 UTC (23 years, 7 months ago) by cnh
Branch: MAIN
Changes since 1.12: +8 -8 lines
File MIME type: application/x-tex
Fig. layouts

1 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
2 % $Name: $
3
4 %tci%\documentclass[12pt]{book}
5 %tci%\usepackage{amsmath}
6 %tci%\usepackage{html}
7 %tci%\usepackage{epsfig}
8 %tci%\usepackage{graphics,subfigure}
9 %tci%\usepackage{array}
10 %tci%\usepackage{multirow}
11 %tci%\usepackage{fancyhdr}
12 %tci%\usepackage{psfrag}
13
14 %tci%%TCIDATA{OutputFilter=Latex.dll}
15 %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16 %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17 %tci%%TCIDATA{Language=American English}
18
19 %tci%\fancyhead{}
20 %tci%\fancyhead[LO]{\slshape \rightmark}
21 %tci%\fancyhead[RE]{\slshape \leftmark}
22 %tci%\fancyhead[RO,LE]{\thepage}
23 %tci%\fancyfoot[CO,CE]{\today}
24 %tci%\fancyfoot[RO,LE]{ }
25 %tci%\renewcommand{\headrulewidth}{0.4pt}
26 %tci%\renewcommand{\footrulewidth}{0.4pt}
27 %tci%\setcounter{secnumdepth}{3}
28 %tci%\input{tcilatex}
29
30 %tci%\begin{document}
31
32 %tci%\tableofcontents
33
34
35 % Section: Overview
36
37 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
38 % $Name: $
39
40 \section{Introduction}
41
42 This documentation provides the reader with the information necessary to
43 carry out numerical experiments using MITgcm. It gives a comprehensive
44 description of the continuous equations on which the model is based, the
45 numerical algorithms the model employs and a description of the associated
46 program code. Along with the hydrodynamical kernel, physical and
47 biogeochemical parameterizations of key atmospheric and oceanic processes
48 are available. A number of examples illustrating the use of the model in
49 both process and general circulation studies of the atmosphere and ocean are
50 also presented.
51
52 MITgcm has a number of novel aspects:
53
54 \begin{itemize}
55 \item it can be used to study both atmospheric and oceanic phenomena; one
56 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57 models - see fig \ref{fig:onemodel}
58
59 %% CNHbegin
60 \input{part1/one_model_figure}
61 %% CNHend
62
63 \item it has a non-hydrostatic capability and so can be used to study both
64 small-scale and large scale processes - see fig \ref{fig:all-scales}
65
66 %% CNHbegin
67 \input{part1/all_scales_figure}
68 %% CNHend
69
70 \item finite volume techniques are employed yielding an intuitive
71 discretization and support for the treatment of irregular geometries using
72 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
73
74 %% CNHbegin
75 \input{part1/fvol_figure}
76 %% CNHend
77
78 \item tangent linear and adjoint counterparts are automatically maintained
79 along with the forward model, permitting sensitivity and optimization
80 studies.
81
82 \item the model is developed to perform efficiently on a wide variety of
83 computational platforms.
84 \end{itemize}
85
86 Key publications reporting on and charting the development of the model are:
87
88 \begin{verbatim}
89
90 Hill, C. and J. Marshall, (1995)
91 Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92 Parallel Computational Fluid Dynamics
93 In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94 and Results Using Parallel Computers, 545-552.
95 Elsevier Science B.V.: New York
96
97 Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
99 J. Geophysical Res., 102(C3), 5733-5752.
100
101 Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102 A finite-volume, incompressible Navier Stokes model for studies of the ocean
103 on parallel computers,
104 J. Geophysical Res., 102(C3), 5753-5766.
105
106 Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107 Representation of topography by shaved cells in a height coordinate ocean
108 model
109 Mon Wea Rev, vol 125, 2293-2315
110
111 Marshall, J., Jones, H. and C. Hill, (1998)
112 Efficient ocean modeling using non-hydrostatic algorithms
113 Journal of Marine Systems, 18, 115-134
114
115 Adcroft, A., Hill C. and J. Marshall: (1999)
116 A new treatment of the Coriolis terms in C-grid models at both high and low
117 resolutions,
118 Mon. Wea. Rev. Vol 127, pages 1928-1936
119
120 Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121 A Strategy for Terascale Climate Modeling.
122 In Proceedings of the Eight ECMWF Workshop on the Use of Parallel Processors
123 in Meteorology
124
125 Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
126 Construction of the adjoint MIT ocean general circulation model and
127 application to Atlantic heat transport variability
128 J. Geophysical Res., 104(C12), 29,529-29,547.
129
130
131 \end{verbatim}
132
133 We begin by briefly showing some of the results of the model in action to
134 give a feel for the wide range of problems that can be addressed using it.
135
136 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
137 % $Name: $
138
139 \section{Illustrations of the model in action}
140
141 The MITgcm has been designed and used to model a wide range of phenomena,
142 from convection on the scale of meters in the ocean to the global pattern of
143 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
144 kinds of problems the model has been used to study, we briefly describe some
145 of them here. A more detailed description of the underlying formulation,
146 numerical algorithm and implementation that lie behind these calculations is
147 given later. Indeed many of the illustrative examples shown below can be
148 easily reproduced: simply download the model (the minimum you need is a PC
149 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
150 described in detail in the documentation.
151
152 \subsection{Global atmosphere: `Held-Suarez' benchmark}
153
154 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
155 both atmospheric and oceanographic flows at both small and large scales.
156
157 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
158 temperature field obtained using the atmospheric isomorph of MITgcm run at
159 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
160 (blue) and warm air along an equatorial band (red). Fully developed
161 baroclinic eddies spawned in the northern hemisphere storm track are
162 evident. There are no mountains or land-sea contrast in this calculation,
163 but you can easily put them in. The model is driven by relaxation to a
164 radiative-convective equilibrium profile, following the description set out
165 in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
166 there are no mountains or land-sea contrast.
167
168 %% CNHbegin
169 \input{part1/cubic_eddies_figure}
170 %% CNHend
171
172 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
173 globe permitting a uniform griding and obviated the need to Fourier filter.
174 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
175 grid, of which the cubed sphere is just one of many choices.
176
177 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
178 wind from a 20-level configuration of
179 the model. It compares favorable with more conventional spatial
180 discretization approaches. The two plots show the field calculated using the
181 cube-sphere grid and the flow calculated using a regular, spherical polar
182 latitude-longitude grid. Both grids are supported within the model.
183
184 %% CNHbegin
185 \input{part1/hs_zave_u_figure}
186 %% CNHend
187
188 \subsection{Ocean gyres}
189
190 Baroclinic instability is a ubiquitous process in the ocean, as well as the
191 atmosphere. Ocean eddies play an important role in modifying the
192 hydrographic structure and current systems of the oceans. Coarse resolution
193 models of the oceans cannot resolve the eddy field and yield rather broad,
194 diffusive patterns of ocean currents. But if the resolution of our models is
195 increased until the baroclinic instability process is resolved, numerical
196 solutions of a different and much more realistic kind, can be obtained.
197
198 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
199 field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
200 resolution on a $lat-lon$
201 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
202 (to avoid the converging of meridian in northern latitudes). 21 vertical
203 levels are used in the vertical with a `lopped cell' representation of
204 topography. The development and propagation of anomalously warm and cold
205 eddies can be clearly seen in the Gulf Stream region. The transport of
206 warm water northward by the mean flow of the Gulf Stream is also clearly
207 visible.
208
209 %% CNHbegin
210 \input{part1/atl6_figure}
211 %% CNHend
212
213
214 \subsection{Global ocean circulation}
215
216 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
217 the surface of a 4$^{\circ }$
218 global ocean model run with 15 vertical levels. Lopped cells are used to
219 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
220 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
221 mixed boundary conditions on temperature and salinity at the surface. The
222 transfer properties of ocean eddies, convection and mixing is parameterized
223 in this model.
224
225 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
226 circulation of the global ocean in Sverdrups.
227
228 %%CNHbegin
229 \input{part1/global_circ_figure}
230 %%CNHend
231
232 \subsection{Convection and mixing over topography}
233
234 Dense plumes generated by localized cooling on the continental shelf of the
235 ocean may be influenced by rotation when the deformation radius is smaller
236 than the width of the cooling region. Rather than gravity plumes, the
237 mechanism for moving dense fluid down the shelf is then through geostrophic
238 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
239 (blue is cold dense fluid, red is
240 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
241 trigger convection by surface cooling. The cold, dense water falls down the
242 slope but is deflected along the slope by rotation. It is found that
243 entrainment in the vertical plane is reduced when rotational control is
244 strong, and replaced by lateral entrainment due to the baroclinic
245 instability of the along-slope current.
246
247 %%CNHbegin
248 \input{part1/convect_and_topo}
249 %%CNHend
250
251 \subsection{Boundary forced internal waves}
252
253 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
254 presence of complex geometry makes it an ideal tool to study internal wave
255 dynamics and mixing in oceanic canyons and ridges driven by large amplitude
256 barotropic tidal currents imposed through open boundary conditions.
257
258 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
259 topographic variations on
260 internal wave breaking - the cross-slope velocity is in color, the density
261 contoured. The internal waves are excited by application of open boundary
262 conditions on the left. They propagate to the sloping boundary (represented
263 using MITgcm's finite volume spatial discretization) where they break under
264 nonhydrostatic dynamics.
265
266 %%CNHbegin
267 \input{part1/boundary_forced_waves}
268 %%CNHend
269
270 \subsection{Parameter sensitivity using the adjoint of MITgcm}
271
272 Forward and tangent linear counterparts of MITgcm are supported using an
273 `automatic adjoint compiler'. These can be used in parameter sensitivity and
274 data assimilation studies.
275
276 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
277 maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
278 of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
279 at 60$^{\circ }$N and $
280 \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
281 a 100 year period. We see that $J$ is
282 sensitive to heat fluxes over the Labrador Sea, one of the important sources
283 of deep water for the thermohaline circulations. This calculation also
284 yields sensitivities to all other model parameters.
285
286 %%CNHbegin
287 \input{part1/adj_hf_ocean_figure}
288 %%CNHend
289
290 \subsection{Global state estimation of the ocean}
291
292 An important application of MITgcm is in state estimation of the global
293 ocean circulation. An appropriately defined `cost function', which measures
294 the departure of the model from observations (both remotely sensed and
295 in-situ) over an interval of time, is minimized by adjusting `control
296 parameters' such as air-sea fluxes, the wind field, the initial conditions
297 etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean
298 surface elevation of the ocean obtained by bringing the model in to
299 consistency with altimetric and in-situ observations over the period
300 1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}
301
302 %% CNHbegin
303 \input{part1/assim_figure}
304 %% CNHend
305
306 \subsection{Ocean biogeochemical cycles}
307
308 MITgcm is being used to study global biogeochemical cycles in the ocean. For
309 example one can study the effects of interannual changes in meteorological
310 forcing and upper ocean circulation on the fluxes of carbon dioxide and
311 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
312 the annual air-sea flux of oxygen and its relation to density outcrops in
313 the southern oceans from a single year of a global, interannually varying
314 simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
315 telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
316
317 %%CNHbegin
318 \input{part1/biogeo_figure}
319 %%CNHend
320
321 \subsection{Simulations of laboratory experiments}
322
323 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
324 laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
325 initially homogeneous tank of water ($1m$ in diameter) is driven from its
326 free surface by a rotating heated disk. The combined action of mechanical
327 and thermal forcing creates a lens of fluid which becomes baroclinically
328 unstable. The stratification and depth of penetration of the lens is
329 arrested by its instability in a process analogous to that which sets the
330 stratification of the ACC.
331
332 %%CNHbegin
333 \input{part1/lab_figure}
334 %%CNHend
335
336 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
337 % $Name: $
338
339 \section{Continuous equations in `r' coordinates}
340
341 To render atmosphere and ocean models from one dynamical core we exploit
342 `isomorphisms' between equation sets that govern the evolution of the
343 respective fluids - see figure \ref{fig:isomorphic-equations}.
344 One system of hydrodynamical equations is written down
345 and encoded. The model variables have different interpretations depending on
346 whether the atmosphere or ocean is being studied. Thus, for example, the
347 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
348 modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})
349 and height, $z$, if we are modeling the ocean (right hand side of figure
350 \ref{fig:isomorphic-equations}).
351
352 %%CNHbegin
353 \input{part1/zandpcoord_figure.tex}
354 %%CNHend
355
356 The state of the fluid at any time is characterized by the distribution of
357 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
358 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
359 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
360 of these fields, obtained by applying the laws of classical mechanics and
361 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
362 a generic vertical coordinate, $r$, so that the appropriate
363 kinematic boundary conditions can be applied isomorphically
364 see figure \ref{fig:zandp-vert-coord}.
365
366 %%CNHbegin
367 \input{part1/vertcoord_figure.tex}
368 %%CNHend
369
370 \begin{equation*}
371 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
372 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
373 \text{ horizontal mtm} \label{eq:horizontal_mtm}
374 \end{equation*}
375
376 \begin{equation}
377 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
378 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
379 vertical mtm} \label{eq:vertical_mtm}
380 \end{equation}
381
382 \begin{equation}
383 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
384 \partial r}=0\text{ continuity} \label{eq:continuity}
385 \end{equation}
386
387 \begin{equation}
388 b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
389 \end{equation}
390
391 \begin{equation}
392 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
393 \label{eq:potential_temperature}
394 \end{equation}
395
396 \begin{equation}
397 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
398 \label{eq:humidity_salt}
399 \end{equation}
400
401 Here:
402
403 \begin{equation*}
404 r\text{ is the vertical coordinate}
405 \end{equation*}
406
407 \begin{equation*}
408 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
409 is the total derivative}
410 \end{equation*}
411
412 \begin{equation*}
413 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
414 \text{ is the `grad' operator}
415 \end{equation*}
416 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
417 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
418 is a unit vector in the vertical
419
420 \begin{equation*}
421 t\text{ is time}
422 \end{equation*}
423
424 \begin{equation*}
425 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
426 velocity}
427 \end{equation*}
428
429 \begin{equation*}
430 \phi \text{ is the `pressure'/`geopotential'}
431 \end{equation*}
432
433 \begin{equation*}
434 \vec{\Omega}\text{ is the Earth's rotation}
435 \end{equation*}
436
437 \begin{equation*}
438 b\text{ is the `buoyancy'}
439 \end{equation*}
440
441 \begin{equation*}
442 \theta \text{ is potential temperature}
443 \end{equation*}
444
445 \begin{equation*}
446 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
447 \end{equation*}
448
449 \begin{equation*}
450 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
451 \mathbf{v}}
452 \end{equation*}
453
454 \begin{equation*}
455 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
456 \end{equation*}
457
458 \begin{equation*}
459 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
460 \end{equation*}
461
462 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
463 `physics' and forcing packages for atmosphere and ocean. These are described
464 in later chapters.
465
466 \subsection{Kinematic Boundary conditions}
467
468 \subsubsection{vertical}
469
470 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
471
472 \begin{equation}
473 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
474 \label{eq:fixedbc}
475 \end{equation}
476
477 \begin{equation}
478 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
479 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
480 \end{equation}
481
482 Here
483
484 \begin{equation*}
485 R_{moving}=R_{o}+\eta
486 \end{equation*}
487 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
488 whether we are in the atmosphere or ocean) of the `moving surface' in the
489 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
490 of motion.
491
492 \subsubsection{horizontal}
493
494 \begin{equation}
495 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
496 \end{equation}
497 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
498
499 \subsection{Atmosphere}
500
501 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
502
503 \begin{equation}
504 r=p\text{ is the pressure} \label{eq:atmos-r}
505 \end{equation}
506
507 \begin{equation}
508 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
509 coordinates} \label{eq:atmos-omega}
510 \end{equation}
511
512 \begin{equation}
513 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
514 \end{equation}
515
516 \begin{equation}
517 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
518 \label{eq:atmos-b}
519 \end{equation}
520
521 \begin{equation}
522 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
523 \label{eq:atmos-theta}
524 \end{equation}
525
526 \begin{equation}
527 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
528 \end{equation}
529 where
530
531 \begin{equation*}
532 T\text{ is absolute temperature}
533 \end{equation*}
534 \begin{equation*}
535 p\text{ is the pressure}
536 \end{equation*}
537 \begin{eqnarray*}
538 &&z\text{ is the height of the pressure surface} \\
539 &&g\text{ is the acceleration due to gravity}
540 \end{eqnarray*}
541
542 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
543 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
544 \begin{equation}
545 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
546 \end{equation}
547 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
548 constant and $c_{p}$ the specific heat of air at constant pressure.
549
550 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
551
552 \begin{equation*}
553 R_{fixed}=p_{top}=0
554 \end{equation*}
555 In a resting atmosphere the elevation of the mountains at the bottom is
556 given by
557 \begin{equation*}
558 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
559 \end{equation*}
560 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
561 atmosphere.
562
563 The boundary conditions at top and bottom are given by:
564
565 \begin{eqnarray}
566 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
567 \label{eq:fixed-bc-atmos} \\
568 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
569 atmosphere)} \label{eq:moving-bc-atmos}
570 \end{eqnarray}
571
572 Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
573 yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
574 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
575
576 \subsection{Ocean}
577
578 In the ocean we interpret:
579 \begin{eqnarray}
580 r &=&z\text{ is the height} \label{eq:ocean-z} \\
581 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
582 \label{eq:ocean-w} \\
583 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
584 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
585 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
586 \end{eqnarray}
587 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
588 acceleration due to gravity.\noindent
589
590 In the above
591
592 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
593
594 The surface of the ocean is given by: $R_{moving}=\eta $
595
596 The position of the resting free surface of the ocean is given by $
597 R_{o}=Z_{o}=0$.
598
599 Boundary conditions are:
600
601 \begin{eqnarray}
602 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
603 \\
604 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
605 \label{eq:moving-bc-ocean}}
606 \end{eqnarray}
607 where $\eta $ is the elevation of the free surface.
608
609 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
610 of oceanic equations
611 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
612 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
613
614 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
615 Non-hydrostatic forms}
616
617 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
618
619 \begin{equation}
620 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
621 \label{eq:phi-split}
622 \end{equation}
623 and write eq(\ref{eq:incompressible}) in the form:
624
625 \begin{equation}
626 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
627 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
628 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
629 \end{equation}
630
631 \begin{equation}
632 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
633 \end{equation}
634
635 \begin{equation}
636 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
637 \partial r}=G_{\dot{r}} \label{eq:mom-w}
638 \end{equation}
639 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
640
641 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
642 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
643 terms in the momentum equations. In spherical coordinates they take the form
644 \footnote{
645 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
646 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
647 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
648 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
649 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
650 discussion:
651
652 \begin{equation}
653 \left.
654 \begin{tabular}{l}
655 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
656 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
657 \\
658 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
659 \\
660 $+\mathcal{F}_{u}$
661 \end{tabular}
662 \ \right\} \left\{
663 \begin{tabular}{l}
664 \textit{advection} \\
665 \textit{metric} \\
666 \textit{Coriolis} \\
667 \textit{\ Forcing/Dissipation}
668 \end{tabular}
669 \ \right. \qquad \label{eq:gu-speherical}
670 \end{equation}
671
672 \begin{equation}
673 \left.
674 \begin{tabular}{l}
675 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
676 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
677 $ \\
678 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
679 $+\mathcal{F}_{v}$
680 \end{tabular}
681 \ \right\} \left\{
682 \begin{tabular}{l}
683 \textit{advection} \\
684 \textit{metric} \\
685 \textit{Coriolis} \\
686 \textit{\ Forcing/Dissipation}
687 \end{tabular}
688 \ \right. \qquad \label{eq:gv-spherical}
689 \end{equation}
690 \qquad \qquad \qquad \qquad \qquad
691
692 \begin{equation}
693 \left.
694 \begin{tabular}{l}
695 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
696 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
697 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
698 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
699 \end{tabular}
700 \ \right\} \left\{
701 \begin{tabular}{l}
702 \textit{advection} \\
703 \textit{metric} \\
704 \textit{Coriolis} \\
705 \textit{\ Forcing/Dissipation}
706 \end{tabular}
707 \ \right. \label{eq:gw-spherical}
708 \end{equation}
709 \qquad \qquad \qquad \qquad \qquad
710
711 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
712 ' is latitude.
713
714 Grad and div operators in spherical coordinates are defined in appendix
715 OPERATORS.
716
717 %%CNHbegin
718 \input{part1/sphere_coord_figure.tex}
719 %%CNHend
720
721 \subsubsection{Shallow atmosphere approximation}
722
723 Most models are based on the `hydrostatic primitive equations' (HPE's) in
724 which the vertical momentum equation is reduced to a statement of
725 hydrostatic balance and the `traditional approximation' is made in which the
726 Coriolis force is treated approximately and the shallow atmosphere
727 approximation is made.\ The MITgcm need not make the `traditional
728 approximation'. To be able to support consistent non-hydrostatic forms the
729 shallow atmosphere approximation can be relaxed - when dividing through by $
730 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
731 the radius of the earth.
732
733 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
734 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
735
736 These are discussed at length in Marshall et al (1997a).
737
738 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
739 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
740 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
741 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
742 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
743 computed at all other levels by integration of the hydrostatic relation, eq(
744 \ref{eq:hydrostatic}).
745
746 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
747 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
748 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
749 contribution to the pressure field: only the terms underlined twice in Eqs. (
750 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
751 and, simultaneously, the shallow atmosphere approximation is relaxed. In
752 \textbf{QH}\ \textit{all} the metric terms are retained and the full
753 variation of the radial position of a particle monitored. The \textbf{QH}\
754 vertical momentum equation (\ref{eq:mom-w}) becomes:
755
756 \begin{equation*}
757 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
758 \end{equation*}
759 making a small correction to the hydrostatic pressure.
760
761 \textbf{QH} has good energetic credentials - they are the same as for
762 \textbf{HPE}. Importantly, however, it has the same angular momentum
763 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
764 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
765
766 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
767
768 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
769 only a quasi-non-hydrostatic atmospheric isomorph.
770
771 \paragraph{Non-hydrostatic Ocean}
772
773 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
774 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
775 three dimensional elliptic equation must be solved subject to Neumann
776 boundary conditions (see below). It is important to note that use of the
777 full \textbf{NH} does not admit any new `fast' waves in to the system - the
778 incompressible condition eq(\ref{eq:continuity}) has already filtered out
779 acoustic modes. It does, however, ensure that the gravity waves are treated
780 accurately with an exact dispersion relation. The \textbf{NH} set has a
781 complete angular momentum principle and consistent energetics - see White
782 and Bromley, 1995; Marshall et.al.\ 1997a.
783
784 \paragraph{Quasi-nonhydrostatic Atmosphere}
785
786 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
787 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
788 (but only here) by:
789
790 \begin{equation}
791 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
792 \end{equation}
793 where $p_{hy}$ is the hydrostatic pressure.
794
795 \subsubsection{Summary of equation sets supported by model}
796
797 \paragraph{Atmosphere}
798
799 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
800 compressible non-Boussinesq equations in $p-$coordinates are supported.
801
802 \subparagraph{Hydrostatic and quasi-hydrostatic}
803
804 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
805 - see eq(\ref{eq:atmos-prime}).
806
807 \subparagraph{Quasi-nonhydrostatic}
808
809 A quasi-nonhydrostatic form is also supported.
810
811 \paragraph{Ocean}
812
813 \subparagraph{Hydrostatic and quasi-hydrostatic}
814
815 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
816 equations in $z-$coordinates are supported.
817
818 \subparagraph{Non-hydrostatic}
819
820 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
821 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
822 {eq:ocean-salt}).
823
824 \subsection{Solution strategy}
825
826 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
827 NH} models is summarized in Figure \ref{fig:solution-strategy}.
828 Under all dynamics, a 2-d elliptic equation is
829 first solved to find the surface pressure and the hydrostatic pressure at
830 any level computed from the weight of fluid above. Under \textbf{HPE} and
831 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
832 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
833 3-d elliptic equation must be solved for the non-hydrostatic pressure before
834 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
835 stepping forward the vertical momentum equation.
836
837 %%CNHbegin
838 \input{part1/solution_strategy_figure.tex}
839 %%CNHend
840
841 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
842 course, some complication that goes with the inclusion of $\cos \varphi \ $
843 Coriolis terms and the relaxation of the shallow atmosphere approximation.
844 But this leads to negligible increase in computation. In \textbf{NH}, in
845 contrast, one additional elliptic equation - a three-dimensional one - must
846 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
847 essentially negligible in the hydrostatic limit (see detailed discussion in
848 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
849 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
850
851 \subsection{Finding the pressure field}
852 \label{sec:finding_the_pressure_field}
853
854 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
855 pressure field must be obtained diagnostically. We proceed, as before, by
856 dividing the total (pressure/geo) potential in to three parts, a surface
857 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
858 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
859 writing the momentum equation as in (\ref{eq:mom-h}).
860
861 \subsubsection{Hydrostatic pressure}
862
863 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
864 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
865
866 \begin{equation*}
867 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
868 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
869 \end{equation*}
870 and so
871
872 \begin{equation}
873 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
874 \end{equation}
875
876 The model can be easily modified to accommodate a loading term (e.g
877 atmospheric pressure pushing down on the ocean's surface) by setting:
878
879 \begin{equation}
880 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
881 \end{equation}
882
883 \subsubsection{Surface pressure}
884
885 The surface pressure equation can be obtained by integrating continuity,
886 (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
887
888 \begin{equation*}
889 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
890 }_{h}+\partial _{r}\dot{r}\right) dr=0
891 \end{equation*}
892
893 Thus:
894
895 \begin{equation*}
896 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
897 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
898 _{h}dr=0
899 \end{equation*}
900 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
901 r $. The above can be rearranged to yield, using Leibnitz's theorem:
902
903 \begin{equation}
904 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
905 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
906 \label{eq:free-surface}
907 \end{equation}
908 where we have incorporated a source term.
909
910 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
911 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
912 be written
913 \begin{equation}
914 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
915 \label{eq:phi-surf}
916 \end{equation}
917 where $b_{s}$ is the buoyancy at the surface.
918
919 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
920 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
921 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
922 surface' and `rigid lid' approaches are available.
923
924 \subsubsection{Non-hydrostatic pressure}
925
926 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
927 $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
928 (\ref{eq:continuity}), we deduce that:
929
930 \begin{equation}
931 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
932 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
933 \vec{\mathbf{F}} \label{eq:3d-invert}
934 \end{equation}
935
936 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
937 subject to appropriate choice of boundary conditions. This method is usually
938 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
939 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
940 the 3-d problem does not need to be solved.
941
942 \paragraph{Boundary Conditions}
943
944 We apply the condition of no normal flow through all solid boundaries - the
945 coasts (in the ocean) and the bottom:
946
947 \begin{equation}
948 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
949 \end{equation}
950 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
951 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
952 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
953 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
954 tangential component of velocity, $v_{T}$, at all solid boundaries,
955 depending on the form chosen for the dissipative terms in the momentum
956 equations - see below.
957
958 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
959
960 \begin{equation}
961 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
962 \label{eq:inhom-neumann-nh}
963 \end{equation}
964 where
965
966 \begin{equation*}
967 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
968 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
969 \end{equation*}
970 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
971 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
972 exploit classical 3D potential theory and, by introducing an appropriately
973 chosen $\delta $-function sheet of `source-charge', replace the
974 inhomogeneous boundary condition on pressure by a homogeneous one. The
975 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
976 \vec{\mathbf{F}}.$ By simultaneously setting $
977 \begin{array}{l}
978 \widehat{n}.\vec{\mathbf{F}}
979 \end{array}
980 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
981 self-consistent but simpler homogenized Elliptic problem is obtained:
982
983 \begin{equation*}
984 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
985 \end{equation*}
986 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
987 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
988 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
989
990 \begin{equation}
991 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
992 \end{equation}
993
994 If the flow is `close' to hydrostatic balance then the 3-d inversion
995 converges rapidly because $\phi _{nh}\ $is then only a small correction to
996 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
997
998 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
999 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1000
1001 \subsection{Forcing/dissipation}
1002
1003 \subsubsection{Forcing}
1004
1005 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1006 `physics packages' and forcing packages. These are described later on.
1007
1008 \subsubsection{Dissipation}
1009
1010 \paragraph{Momentum}
1011
1012 Many forms of momentum dissipation are available in the model. Laplacian and
1013 biharmonic frictions are commonly used:
1014
1015 \begin{equation}
1016 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1017 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1018 \end{equation}
1019 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1020 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1021 friction. These coefficients are the same for all velocity components.
1022
1023 \paragraph{Tracers}
1024
1025 The mixing terms for the temperature and salinity equations have a similar
1026 form to that of momentum except that the diffusion tensor can be
1027 non-diagonal and have varying coefficients. $\qquad $
1028 \begin{equation}
1029 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1030 _{h}^{4}(T,S) \label{eq:diffusion}
1031 \end{equation}
1032 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1033 horizontal coefficient for biharmonic diffusion. In the simplest case where
1034 the subgrid-scale fluxes of heat and salt are parameterized with constant
1035 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1036 reduces to a diagonal matrix with constant coefficients:
1037
1038 \begin{equation}
1039 \qquad \qquad \qquad \qquad K=\left(
1040 \begin{array}{ccc}
1041 K_{h} & 0 & 0 \\
1042 0 & K_{h} & 0 \\
1043 0 & 0 & K_{v}
1044 \end{array}
1045 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1046 \end{equation}
1047 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1048 coefficients. These coefficients are the same for all tracers (temperature,
1049 salinity ... ).
1050
1051 \subsection{Vector invariant form}
1052
1053 For some purposes it is advantageous to write momentum advection in eq(\ref
1054 {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1055
1056 \begin{equation}
1057 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1058 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1059 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1060 \label{eq:vi-identity}
1061 \end{equation}
1062 This permits alternative numerical treatments of the non-linear terms based
1063 on their representation as a vorticity flux. Because gradients of coordinate
1064 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1065 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1066 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1067 about the geometry is contained in the areas and lengths of the volumes used
1068 to discretize the model.
1069
1070 \subsection{Adjoint}
1071
1072 Tangent linear and adjoint counterparts of the forward model are described
1073 in Chapter 5.
1074
1075 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
1076 % $Name: $
1077
1078 \section{Appendix ATMOSPHERE}
1079
1080 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1081 coordinates}
1082
1083 \label{sect-hpe-p}
1084
1085 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1086 \begin{eqnarray}
1087 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1088 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1089 \label{eq:atmos-mom} \\
1090 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1091 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1092 \partial p} &=&0 \label{eq:atmos-cont} \\
1093 p\alpha &=&RT \label{eq:atmos-eos} \\
1094 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1095 \end{eqnarray}
1096 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1097 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1098 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1099 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1100 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1101 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1102 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1103 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1104 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1105
1106 It is convenient to cast the heat equation in terms of potential temperature
1107 $\theta $ so that it looks more like a generic conservation law.
1108 Differentiating (\ref{eq:atmos-eos}) we get:
1109 \begin{equation*}
1110 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1111 \end{equation*}
1112 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1113 c_{p}=c_{v}+R$, gives:
1114 \begin{equation}
1115 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1116 \label{eq-p-heat-interim}
1117 \end{equation}
1118 Potential temperature is defined:
1119 \begin{equation}
1120 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1121 \end{equation}
1122 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1123 we will make use of the Exner function $\Pi (p)$ which defined by:
1124 \begin{equation}
1125 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1126 \end{equation}
1127 The following relations will be useful and are easily expressed in terms of
1128 the Exner function:
1129 \begin{equation*}
1130 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1131 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1132 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1133 \frac{Dp}{Dt}
1134 \end{equation*}
1135 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1136
1137 The heat equation is obtained by noting that
1138 \begin{equation*}
1139 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1140 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1141 \end{equation*}
1142 and on substituting into (\ref{eq-p-heat-interim}) gives:
1143 \begin{equation}
1144 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1145 \label{eq:potential-temperature-equation}
1146 \end{equation}
1147 which is in conservative form.
1148
1149 For convenience in the model we prefer to step forward (\ref
1150 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1151
1152 \subsubsection{Boundary conditions}
1153
1154 The upper and lower boundary conditions are :
1155 \begin{eqnarray}
1156 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1157 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1158 \label{eq:boundary-condition-atmosphere}
1159 \end{eqnarray}
1160 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1161 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1162 surface ($\phi $ is imposed and $\omega \neq 0$).
1163
1164 \subsubsection{Splitting the geo-potential}
1165
1166 For the purposes of initialization and reducing round-off errors, the model
1167 deals with perturbations from reference (or ``standard'') profiles. For
1168 example, the hydrostatic geopotential associated with the resting atmosphere
1169 is not dynamically relevant and can therefore be subtracted from the
1170 equations. The equations written in terms of perturbations are obtained by
1171 substituting the following definitions into the previous model equations:
1172 \begin{eqnarray}
1173 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1174 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1175 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1176 \end{eqnarray}
1177 The reference state (indicated by subscript ``0'') corresponds to
1178 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1179 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1180 _{o}(p_{o})=g~Z_{topo}$, defined:
1181 \begin{eqnarray*}
1182 \theta _{o}(p) &=&f^{n}(p) \\
1183 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1184 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1185 \end{eqnarray*}
1186 %\begin{eqnarray*}
1187 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1188 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1189 %\end{eqnarray*}
1190
1191 The final form of the HPE's in p coordinates is then:
1192 \begin{eqnarray}
1193 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1194 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1195 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1196 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1197 \partial p} &=&0 \\
1198 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1199 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1200 \end{eqnarray}
1201
1202 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
1203 % $Name: $
1204
1205 \section{Appendix OCEAN}
1206
1207 \subsection{Equations of motion for the ocean}
1208
1209 We review here the method by which the standard (Boussinesq, incompressible)
1210 HPE's for the ocean written in z-coordinates are obtained. The
1211 non-Boussinesq equations for oceanic motion are:
1212 \begin{eqnarray}
1213 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1214 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1215 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1216 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1217 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1218 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1219 \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1220 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1221 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1222 \label{eq:non-boussinesq}
1223 \end{eqnarray}
1224 These equations permit acoustics modes, inertia-gravity waves,
1225 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1226 mode. As written, they cannot be integrated forward consistently - if we
1227 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1228 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1229 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1230 therefore necessary to manipulate the system as follows. Differentiating the
1231 EOS (equation of state) gives:
1232
1233 \begin{equation}
1234 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1235 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1236 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1237 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1238 \end{equation}
1239
1240 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1241 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
1242 \begin{equation}
1243 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1244 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1245 \end{equation}
1246 where we have used an approximation sign to indicate that we have assumed
1247 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1248 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1249 can be explicitly integrated forward:
1250 \begin{eqnarray}
1251 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1252 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1253 \label{eq-cns-hmom} \\
1254 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1255 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1256 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1257 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1258 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1259 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1260 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1261 \end{eqnarray}
1262
1263 \subsubsection{Compressible z-coordinate equations}
1264
1265 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1266 wherever it appears in a product (ie. non-linear term) - this is the
1267 `Boussinesq assumption'. The only term that then retains the full variation
1268 in $\rho $ is the gravitational acceleration:
1269 \begin{eqnarray}
1270 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1271 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1272 \label{eq-zcb-hmom} \\
1273 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1274 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1275 \label{eq-zcb-hydro} \\
1276 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1277 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1278 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1279 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1280 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1281 \end{eqnarray}
1282 These equations still retain acoustic modes. But, because the
1283 ``compressible'' terms are linearized, the pressure equation \ref
1284 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1285 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1286 These are the \emph{truly} compressible Boussinesq equations. Note that the
1287 EOS must have the same pressure dependency as the linearized pressure term,
1288 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1289 c_{s}^{2}}$, for consistency.
1290
1291 \subsubsection{`Anelastic' z-coordinate equations}
1292
1293 The anelastic approximation filters the acoustic mode by removing the
1294 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1295 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1296 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1297 continuity and EOS. A better solution is to change the dependency on
1298 pressure in the EOS by splitting the pressure into a reference function of
1299 height and a perturbation:
1300 \begin{equation*}
1301 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1302 \end{equation*}
1303 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1304 differentiating the EOS, the continuity equation then becomes:
1305 \begin{equation*}
1306 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1307 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1308 \frac{\partial w}{\partial z}=0
1309 \end{equation*}
1310 If the time- and space-scales of the motions of interest are longer than
1311 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1312 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1313 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1314 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1315 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1316 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1317 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1318 anelastic continuity equation:
1319 \begin{equation}
1320 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1321 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1322 \end{equation}
1323 A slightly different route leads to the quasi-Boussinesq continuity equation
1324 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1325 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1326 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1327 \begin{equation}
1328 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1329 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1330 \end{equation}
1331 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1332 equation if:
1333 \begin{equation}
1334 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1335 \end{equation}
1336 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1337 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1338 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1339 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1340 then:
1341 \begin{eqnarray}
1342 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1343 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1344 \label{eq-zab-hmom} \\
1345 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1346 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1347 \label{eq-zab-hydro} \\
1348 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1349 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1350 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1351 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1352 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1353 \end{eqnarray}
1354
1355 \subsubsection{Incompressible z-coordinate equations}
1356
1357 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1358 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1359 yield the ``truly'' incompressible Boussinesq equations:
1360 \begin{eqnarray}
1361 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1362 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1363 \label{eq-ztb-hmom} \\
1364 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1365 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1366 \label{eq-ztb-hydro} \\
1367 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1368 &=&0 \label{eq-ztb-cont} \\
1369 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1370 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1371 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1372 \end{eqnarray}
1373 where $\rho _{c}$ is a constant reference density of water.
1374
1375 \subsubsection{Compressible non-divergent equations}
1376
1377 The above ``incompressible'' equations are incompressible in both the flow
1378 and the density. In many oceanic applications, however, it is important to
1379 retain compressibility effects in the density. To do this we must split the
1380 density thus:
1381 \begin{equation*}
1382 \rho =\rho _{o}+\rho ^{\prime }
1383 \end{equation*}
1384 We then assert that variations with depth of $\rho _{o}$ are unimportant
1385 while the compressible effects in $\rho ^{\prime }$ are:
1386 \begin{equation*}
1387 \rho _{o}=\rho _{c}
1388 \end{equation*}
1389 \begin{equation*}
1390 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1391 \end{equation*}
1392 This then yields what we can call the semi-compressible Boussinesq
1393 equations:
1394 \begin{eqnarray}
1395 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1396 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1397 \mathcal{F}}} \label{eq:ocean-mom} \\
1398 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1399 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1400 \label{eq:ocean-wmom} \\
1401 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1402 &=&0 \label{eq:ocean-cont} \\
1403 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1404 \\
1405 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1406 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1407 \end{eqnarray}
1408 Note that the hydrostatic pressure of the resting fluid, including that
1409 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1410 dynamics.
1411
1412 Though necessary, the assumptions that go into these equations are messy
1413 since we essentially assume a different EOS for the reference density and
1414 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1415 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1416 community and referred to as the primitive equations (HPE).
1417
1418 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.12 2001/11/19 14:33:44 cnh Exp $
1419 % $Name: $
1420
1421 \section{Appendix:OPERATORS}
1422
1423 \subsection{Coordinate systems}
1424
1425 \subsubsection{Spherical coordinates}
1426
1427 In spherical coordinates, the velocity components in the zonal, meridional
1428 and vertical direction respectively, are given by (see Fig.2) :
1429
1430 \begin{equation*}
1431 u=r\cos \varphi \frac{D\lambda }{Dt}
1432 \end{equation*}
1433
1434 \begin{equation*}
1435 v=r\frac{D\varphi }{Dt}\qquad
1436 \end{equation*}
1437 $\qquad \qquad \qquad \qquad $
1438
1439 \begin{equation*}
1440 \dot{r}=\frac{Dr}{Dt}
1441 \end{equation*}
1442
1443 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1444 distance of the particle from the center of the earth, $\Omega $ is the
1445 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1446
1447 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1448 spherical coordinates:
1449
1450 \begin{equation*}
1451 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1452 ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1453 \right)
1454 \end{equation*}
1455
1456 \begin{equation*}
1457 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1458 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1459 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1460 \end{equation*}
1461
1462 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22