/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Contents of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Thu Sep 27 17:45:03 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
File MIME type: application/x-tex
Added figs for part1 + manual.tex which is latest import
from s-word (not split).

Needs tidying up and fig layouts need sorting.

1 %%%% % $Header: /u/gcmpack/mitgcmdoc/manual.tex,v 1.3 2001/08/09 19:30:00 adcroft Exp $
2 %%%% % $Name: $
3 %%%% %\usepackage{oldgerm}
4 %%%% % I commented the following because it introduced excessive white space
5 %%%% %\usepackage{palatcm} % better PDF
6 %%%% % page headers and footers
7 %%%% %\pagestyle{fancy}
8 %%%% % referencing
9 %%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}
10 %%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}
11 %%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}
12 %%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}}
13 %%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}
14 %%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}}
15 %%%% % stuff for psfrag
16 %%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}
17 %%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}
18 %%%% % This allows numbering of subsubsections
19 %%%% % This changes the the chapter title
20 %%%% %\renewcommand{\chaptername}{Section}
21
22
23 %%%% \documentclass[12pt]{book}
24 %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 %%%% \usepackage{amsmath}
26 %%%% \usepackage{html}
27 %%%% \usepackage{epsfig}
28 %%%% \usepackage{graphics,subfigure}
29 %%%% \usepackage{array}
30 %%%% \usepackage{multirow}
31 %%%% \usepackage{fancyhdr}
32 %%%% \usepackage{psfrag}
33 %%%%
34 %%%% %TCIDATA{OutputFilter=Latex.dll}
35 %%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02}
36 %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
37 %%%% %TCIDATA{Language=American English}
38 %%%%
39 %%%% \fancyhead{}
40 %%%% \fancyhead[LO]{\slshape \rightmark}
41 %%%% \fancyhead[RE]{\slshape \leftmark}
42 %%%% \fancyhead[RO,LE]{\thepage}
43 %%%% \fancyfoot[CO,CE]{\today}
44 %%%% \fancyfoot[RO,LE]{ }
45 %%%% \renewcommand{\headrulewidth}{0.4pt}
46 %%%% \renewcommand{\footrulewidth}{0.4pt}
47 %%%% \setcounter{secnumdepth}{3}
48 %%%%
49 %%%% \input{tcilatex}
50 %%%%
51 %%%% \begin{document}
52 %%%%
53 %%%% \tableofcontents
54
55 \pagebreak
56
57 \part{MITgcm basics}
58
59 % Section: Overview
60
61 % $Header: /u/gcmpack/mitgcmdoc/part1/introduction.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
62 % $Name: $
63
64 \section{Introduction}
65
66 This documentation provides the reader with the information necessary to
67 carry out numerical experiments using MITgcm. It gives a comprehensive
68 description of the continuous equations on which the model is based, the
69 numerical algorithms the model employs and a description of the associated
70 program code. Along with the hydrodynamical kernel, physical and
71 biogeochemical parameterizations of key atmospheric and oceanic processes
72 are available. A number of examples illustrating the use of the model in
73 both process and general circulation studies of the atmosphere and ocean are
74 also presented.
75
76 MITgcm has a number of novel aspects:
77
78 \begin{itemize}
79 \item it can be used to study both atmospheric and oceanic phenomena; one
80 hydrodynamical kernel is used to drive forward both atmospheric and oceanic
81 models - see fig.1%
82 \marginpar{
83 Fig.1 One model}\ref{fig:onemodel}
84
85 \begin{figure}
86 \begin{center}
87 \resizebox{!}{4in}{
88 \rotatebox{90}{
89 \rotatebox{180}{
90 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps}
91 }
92 }
93 }
94 \end{center}
95 \label{fig:onemodel}
96 \end{figure}
97
98 \item it has a non-hydrostatic capability and so can be used to study both
99 small-scale and large scale processes - see fig.2%
100 \marginpar{
101 Fig.2 All scales}\ref{fig:all-scales}
102
103
104 \begin{figure}
105 \begin{center}
106 \resizebox{!}{4in}{
107 \rotatebox{90}{
108 \rotatebox{180}{
109 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps}
110 }
111 }
112 }
113 \end{center}
114 \label{fig:scales}
115 \end{figure}
116
117
118 \item finite volume techniques are employed yielding an intuitive
119 discretization and support for the treatment of irregular geometries using
120 orthogonal curvilinear grids and shaved cells - see fig.3%
121 \marginpar{
122 Fig.3 Finite volumes}\ref{fig:Finite volumes}
123
124 \item tangent linear and adjoint counterparts are automatically maintained
125 along with the forward model, permitting sensitivity and optimization
126 studies.
127
128 \item the model is developed to perform efficiently on a wide variety of
129 computational platforms.
130 \end{itemize}
131
132 Key publications reporting on and charting the development of the model are
133 listed in an Appendix.
134
135 We begin by briefly showing some of the results of the model in action to
136 give a feel for the wide range of problems that can be addressed using it.
137 \pagebreak
138
139 % $Header: /u/gcmpack/mitgcmdoc/part1/illustration.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
140 % $Name: $
141
142 \section{Illustrations of the model in action}
143
144 The MITgcm has been designed and used to model a wide range of phenomena,
145 from convection on the scale of meters in the ocean to the global pattern of
146 atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
147 kinds of problems the model has been used to study, we briefly describe some
148 of them here. A more detailed description of the underlying formulation,
149 numerical algorithm and implementation that lie behind these calculations is
150 given later. Indeed it is easy to reproduce the results shown here: simply
151 download the model (the minimum you need is a PC running linux, together
152 with a FORTRAN\ 77 compiler) and follow the examples.
153
154 \subsection{Global atmosphere: `Held-Suarez' benchmark}
155
156 Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height
157 field obtained using a 5-level version of the atmospheric pressure isomorph
158 run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies
159 along the northern hemisphere storm track. There are no mountains or
160 land-sea contrast in this calculation, but you can easily put them in. The
161 model is driven by relaxation to a radiative-convective equilibrium profile,
162 following the description set out in Held and Suarez; 1994 designed to test
163 atmospheric hydrodynamical cores - there are no mountains or land-sea
164 contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to
165 descretize the globe permitting a uniform gridding and obviated the need to
166 fourier filter.
167
168 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
169 wind and meridional overturning streamfunction from the 5-level model.
170
171
172 \begin{figure}
173 \begin{center}
174 \resizebox{!}{4in}{
175 \rotatebox{90}{
176 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps}
177 }
178 }
179 \end{center}
180 \label{fig:hscs}
181 \end{figure}
182
183
184 A regular spherical lat-lon grid can also be used.
185
186 \begin{figure}
187 \begin{center}
188 \resizebox{!}{4in}{
189 \rotatebox{90}{
190 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps}
191 }
192 }
193 \end{center}
194 \label{fig:hslatlon}
195 \end{figure}
196
197 \subsection{Ocean gyres}
198
199 \subsection{Global ocean circulation}
200
201 Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
202 global ocean model run with 15 vertical levels. The model is driven using
203 monthly-mean winds with mixed boundary conditions on temperature and
204 salinity at the surface. Fig.E2b shows the overturning (thermohaline)
205 circulation. Lopped cells are used to represent topography on a regular $%
206 lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$.
207
208
209 \begin{figure}
210 \begin{center}
211 \resizebox{!}{4in}{
212 % \rotatebox{90}{
213 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps}
214 % }
215 }
216 \end{center}
217 \label{fig:horizcirc}
218 \end{figure}
219
220 \begin{figure}
221 \begin{center}
222 \resizebox{!}{4in}{
223 \rotatebox{90}{
224 \rotatebox{180}{
225 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps}
226 }
227 }
228 }
229 \end{center}
230 \label{fig:moc}
231 \end{figure}
232
233
234 \subsection{Flow over topography}
235
236 \subsection{Ocean convection}
237
238 Fig.E3 shows convection over a slope using the non-hydrostatic ocean
239 isomorph and lopped cells to respresent topography. .....The grid resolution
240 is
241
242 \subsection{Boundary forced internal waves}
243
244 \subsection{Carbon outgassing sensitivity}
245
246 Fig.E4 shows....
247
248 \begin{figure}
249 \begin{center}
250 \resizebox{!}{4in}{
251 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps}
252 }
253 \end{center}
254 \label{fig:co2mrt}
255 \end{figure}
256
257
258 % $Header: /u/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
259 % $Name: $
260
261 \section{Continuous equations in `r' coordinates}
262
263 To render atmosphere and ocean models from one dynamical core we exploit
264 `isomorphisms' between equation sets that govern the evolution of the
265 respective fluids - see fig.4%
266 \marginpar{
267 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
268 and encoded. The model variables have different interpretations depending on
269 whether the atmosphere or ocean is being studied. Thus, for example, the
270 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
271 modeling the atmosphere and height, $z$, if we are modeling the ocean.
272
273 The state of the fluid at any time is characterized by the distribution of
274 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
275 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
276 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
277 of these fields, obtained by applying the laws of classical mechanics and
278 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
279 a generic vertical coordinate, $r$, see fig.5%
280 \marginpar{
281 Fig.5 The vertical coordinate of model}:
282
283 \begin{figure}
284 \begin{center}
285 \resizebox{!}{4in}{
286 \rotatebox{90}{
287 \rotatebox{180}{
288 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps}
289 }
290 }
291 }
292 \end{center}
293 \label{fig:vertcoord}
294 \end{figure}
295
296 \begin{equation*}
297 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
298 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%
299 \text{ horizontal mtm}
300 \end{equation*}
301
302 \begin{equation*}
303 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
304 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
305 vertical mtm}
306 \end{equation*}
307
308 \begin{equation}
309 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
310 \partial r}=0\text{ continuity} \label{eq:continuous}
311 \end{equation}
312
313 \begin{equation*}
314 b=b(\theta ,S,r)\text{ equation of state}
315 \end{equation*}
316
317 \begin{equation*}
318 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
319 \end{equation*}
320
321 \begin{equation*}
322 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
323 \end{equation*}
324
325 Here:
326
327 \begin{equation*}
328 r\text{ is the vertical coordinate}
329 \end{equation*}
330
331 \begin{equation*}
332 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
333 is the total derivative}
334 \end{equation*}
335
336 \begin{equation*}
337 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
338 \text{ is the `grad' operator}
339 \end{equation*}
340 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
341 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
342 is a unit vector in the vertical
343
344 \begin{equation*}
345 t\text{ is time}
346 \end{equation*}
347
348 \begin{equation*}
349 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
350 velocity}
351 \end{equation*}
352
353 \begin{equation*}
354 \phi \text{ is the `pressure'/`geopotential'}
355 \end{equation*}
356
357 \begin{equation*}
358 \vec{\Omega}\text{ is the Earth's rotation}
359 \end{equation*}
360
361 \begin{equation*}
362 b\text{ is the `buoyancy'}
363 \end{equation*}
364
365 \begin{equation*}
366 \theta \text{ is potential temperature}
367 \end{equation*}
368
369 \begin{equation*}
370 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
371 \end{equation*}
372
373 \begin{equation*}
374 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%
375 \mathbf{v}}
376 \end{equation*}
377
378 \begin{equation*}
379 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }%
380 \theta
381 \end{equation*}
382
383 \begin{equation*}
384 \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
385 \end{equation*}
386
387 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
388 extensive `physics' packages for atmosphere and ocean described in Chapter 6.
389
390 \subsection{Kinematic Boundary conditions}
391
392 \subsubsection{vertical}
393
394 at fixed and moving $r$ surfaces we set (see fig.5):
395
396 \begin{equation}
397 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
398 \label{eq:fixedbc}
399 \end{equation}
400
401 \begin{equation}
402 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
403 (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
404 \end{equation}
405
406 Here
407
408 \begin{equation*}
409 R_{moving}=R_{o}+\eta
410 \end{equation*}
411 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
412 whether we are in the atmosphere or ocean) of the `moving surface' in the
413 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
414 of motion.
415
416 \subsubsection{horizontal}
417
418 \begin{equation}
419 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
420 \end{equation}%
421 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
422
423 \subsection{Atmosphere}
424
425 In the atmosphere, see fig.5, we interpret:
426
427 \begin{equation}
428 r=p\text{ is the pressure} \label{eq:atmos-r}
429 \end{equation}
430
431 \begin{equation}
432 \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
433 coordinates} \label{eq:atmos-omega}
434 \end{equation}
435
436 \begin{equation}
437 \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
438 \end{equation}
439
440 \begin{equation}
441 b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
442 \label{eq:atmos-b}
443 \end{equation}
444
445 \begin{equation}
446 \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
447 \label{eq:atmos-theta}
448 \end{equation}
449
450 \begin{equation}
451 S=q,\text{ is the specific humidity} \label{eq:atmos-s}
452 \end{equation}
453 where
454
455 \begin{equation*}
456 T\text{ is absolute temperature}
457 \end{equation*}%
458 \begin{equation*}
459 p\text{ is the pressure}
460 \end{equation*}%
461 \begin{eqnarray*}
462 &&z\text{ is the height of the pressure surface} \\
463 &&g\text{ is the acceleration due to gravity}
464 \end{eqnarray*}
465
466 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
467 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
468 \begin{equation}
469 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
470 \end{equation}%
471 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
472 constant and $c_{p}$ the specific heat of air at constant pressure.
473
474 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
475
476 \begin{equation*}
477 R_{fixed}=p_{top}=0
478 \end{equation*}
479 In a resting atmosphere the elevation of the mountains at the bottom is
480 given by
481 \begin{equation*}
482 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
483 \end{equation*}
484 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
485 atmosphere.
486
487 The boundary conditions at top and bottom are given by:
488
489 \begin{eqnarray}
490 &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
491 \label{eq:fixed-bc-atmos} \\
492 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
493 atmosphere)} \label{eq:moving-bc-atmos}
494 \end{eqnarray}
495
496 Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
497 set of atmospheric equations which, for convenience, are written out in $p$
498 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
499
500 \subsection{Ocean}
501
502 In the ocean we interpret:
503 \begin{eqnarray}
504 r &=&z\text{ is the height} \label{eq:ocean-z} \\
505 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
506 \label{eq:ocean-w} \\
507 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
508 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
509 _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
510 \end{eqnarray}
511 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
512 acceleration due to gravity.\noindent
513
514 In the above
515
516 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
517
518 The surface of the ocean is given by: $R_{moving}=\eta $
519
520 The position of the resting free surface of the ocean is given by $%
521 R_{o}=Z_{o}=0$.
522
523 Boundary conditions are:
524
525 \begin{eqnarray}
526 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
527 \\
528 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %
529 \label{eq:moving-bc-ocean}}
530 \end{eqnarray}
531 where $\eta $ is the elevation of the free surface.
532
533 Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
534 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
535 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
536
537 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
538 Non-hydrostatic forms}
539
540 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
541
542 \begin{equation}
543 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
544 \label{eq:phi-split}
545 \end{equation}%
546 and write eq(\ref{incompressible}a,b) in the form:
547
548 \begin{equation}
549 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
550 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
551 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
552 \end{equation}
553
554 \begin{equation}
555 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
556 \end{equation}
557
558 \begin{equation}
559 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
560 \partial r}=G_{\dot{r}} \label{eq:mom-w}
561 \end{equation}
562 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
563
564 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%
565 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
566 terms in the momentum equations. In spherical coordinates they take the form%
567 \footnote{%
568 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
569 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%
570 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
571 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%
572 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
573 discussion:
574
575 \begin{equation}
576 \left.
577 \begin{tabular}{l}
578 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
579 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
580 \\
581 $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
582 \\
583 $+\mathcal{F}_{u}$%
584 \end{tabular}%
585 \ \right\} \left\{
586 \begin{tabular}{l}
587 \textit{advection} \\
588 \textit{metric} \\
589 \textit{Coriolis} \\
590 \textit{\ Forcing/Dissipation}%
591 \end{tabular}%
592 \ \right. \qquad \label{eq:gu-speherical}
593 \end{equation}
594
595 \begin{equation}
596 \left.
597 \begin{tabular}{l}
598 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
599 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
600 $ \\
601 $-\left\{ -2\Omega u\sin lat\right\} $ \\
602 $+\mathcal{F}_{v}$%
603 \end{tabular}%
604 \ \right\} \left\{
605 \begin{tabular}{l}
606 \textit{advection} \\
607 \textit{metric} \\
608 \textit{Coriolis} \\
609 \textit{\ Forcing/Dissipation}%
610 \end{tabular}%
611 \ \right. \qquad \label{eq:gv-spherical}
612 \end{equation}%
613 \qquad \qquad \qquad \qquad \qquad
614
615 \begin{equation}
616 \left.
617 \begin{tabular}{l}
618 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
619 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
620 ${+}\underline{{2\Omega u\cos lat}}$ \\
621 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%
622 \end{tabular}%
623 \ \right\} \left\{
624 \begin{tabular}{l}
625 \textit{advection} \\
626 \textit{metric} \\
627 \textit{Coriolis} \\
628 \textit{\ Forcing/Dissipation}%
629 \end{tabular}%
630 \ \right. \label{eq:gw-spherical}
631 \end{equation}%
632 \qquad \qquad \qquad \qquad \qquad
633
634 In the above `${r}$' is the distance from the center of the earth and `$lat$%
635 ' is latitude.
636
637 Grad and div operators in spherical coordinates are defined in appendix
638 OPERATORS.%
639 \marginpar{
640 Fig.6 Spherical polar coordinate system.}
641
642 \begin{figure}
643 \begin{center}
644 \resizebox{!}{4in}{
645 \rotatebox{90}{
646 \rotatebox{180}{
647 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps}
648 }
649 }
650 }
651 \end{center}
652 \label{fig:spcoord}
653 \end{figure}
654
655
656 \subsubsection{Shallow atmosphere approximation}
657
658 Most models are based on the `hydrostatic primitive equations' (HPE's) in
659 which the vertical momentum equation is reduced to a statement of
660 hydrostatic balance and the `traditional approximation' is made in which the
661 Coriolis force is treated approximately and the shallow atmosphere
662 approximation is made.\ The MITgcm need not make the `traditional
663 approximation'. To be able to support consistent non-hydrostatic forms the
664 shallow atmosphere approximation can be relaxed - when dividing through by $r
665 $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
666 the radius of the earth.
667
668 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
669
670 These are discussed at length in Marshall et al (1997a).
671
672 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
673 terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
674 are neglected and `${r}$' is replaced by `$a$', the mean radius of the
675 earth. Once the pressure is found at one level - e.g. by inverting a 2-d
676 Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
677 computed at all other levels by integration of the hydrostatic relation, eq(%
678 \ref{eq:hydrostatic}).
679
680 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
681 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
682 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
683 contribution to the pressure field: only the terms underlined twice in Eqs. (%
684 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
685 and, simultaneously, the shallow atmosphere approximation is relaxed. In
686 \textbf{QH}\ \textit{all} the metric terms are retained and the full
687 variation of the radial position of a particle monitored. The \textbf{QH}\
688 vertical momentum equation (\ref{eq:mom-w}) becomes:
689
690 \begin{equation*}
691 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
692 \end{equation*}
693 making a small correction to the hydrostatic pressure.
694
695 \textbf{QH} has good energetic credentials - they are the same as for
696 \textbf{HPE}. Importantly, however, it has the same angular momentum
697 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
698 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
699
700 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
701
702 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
703 only a quasi-non-hydrostatic atmospheric isomorph.
704
705 \paragraph{Non-hydrostatic Ocean}
706
707 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%
708 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
709 three dimensional elliptic equation must be solved subject to Neumann
710 boundary conditions (see below). It is important to note that use of the
711 full \textbf{NH} does not admit any new `fast' waves in to the system - the
712 incompressible condition eq(\ref{eq:continuous})c has already filtered out
713 acoustic modes. It does, however, ensure that the gravity waves are treated
714 accurately with an exact dispersion relation. The \textbf{NH} set has a
715 complete angular momentum principle and consistent energetics - see White
716 and Bromley, 1995; Marshall et.al.\ 1997a.
717
718 \paragraph{Quasi-nonhydrostatic Atmosphere}
719
720 In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
721 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
722 (but only here) by:
723
724 \begin{equation}
725 \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
726 \end{equation}%
727 where $p_{hy}$ is the hydrostatic pressure.
728
729 \subsubsection{Summary of equation sets supported by model}
730
731 \paragraph{Atmosphere}
732
733 Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
734 compressible non-Boussinesq equations in $p-$coordinates are supported.
735
736 \subparagraph{Hydrostatic and quasi-hydrostatic}
737
738 The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
739 - see eq(\ref{eq:atmos-prime}).
740
741 \subparagraph{Quasi-nonhydrostatic}
742
743 A quasi-nonhydrostatic form is also supported.
744
745 \paragraph{Ocean}
746
747 \subparagraph{Hydrostatic and quasi-hydrostatic}
748
749 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
750 equations in $z-$coordinates are supported.
751
752 \subparagraph{Non-hydrostatic}
753
754 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
755 coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%
756 {eq:ocean-salt}).
757
758 \subsection{Solution strategy}
759
760 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
761 NH} models is summarized in Fig.7.%
762 \marginpar{
763 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
764 first solved to find the surface pressure and the hydrostatic pressure at
765 any level computed from the weight of fluid above. Under \textbf{HPE} and
766 \textbf{QH} dynamics, the horizontal momentum equations are then stepped
767 forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
768 3-d elliptic equation must be solved for the non-hydrostatic pressure before
769 stepping forward the horizontal momentum equations; $\dot{r}$ is found by
770 stepping forward the vertical momentum equation.
771
772 \begin{figure}
773 \begin{center}
774 \resizebox{!}{4in}{
775 \rotatebox{90}{
776 \rotatebox{180}{
777 \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps}
778 }
779 }
780 }
781 \end{center}
782 \label{fig:solnstart}
783 \end{figure}
784
785
786 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
787 course, some complication that goes with the inclusion of $\cos \phi \ $%
788 Coriolis terms and the relaxation of the shallow atmosphere approximation.
789 But this leads to negligible increase in computation. In \textbf{NH}, in
790 contrast, one additional elliptic equation - a three-dimensional one - must
791 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
792 essentially negligible in the hydrostatic limit (see detailed discussion in
793 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
794 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
795
796 \subsection{Finding the pressure field}
797
798 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
799 pressure field must be obtained diagnostically. We proceed, as before, by
800 dividing the total (pressure/geo) potential in to three parts, a surface
801 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
802 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
803 writing the momentum equation as in (\ref{eq:mom-h}).
804
805 \subsubsection{Hydrostatic pressure}
806
807 Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
808 vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
809
810 \begin{equation*}
811 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%
812 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
813 \end{equation*}
814 and so
815
816 \begin{equation}
817 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
818 \end{equation}
819
820 The model can be easily modified to accommodate a loading term (e.g
821 atmospheric pressure pushing down on the ocean's surface) by setting:
822
823 \begin{equation}
824 \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
825 \end{equation}
826
827 \subsubsection{Surface pressure}
828
829 The surface pressure equation can be obtained by integrating continuity, (%
830 \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
831
832 \begin{equation*}
833 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
834 }_{h}+\partial _{r}\dot{r}\right) dr=0
835 \end{equation*}
836
837 Thus:
838
839 \begin{equation*}
840 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
841 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
842 _{h}dr=0
843 \end{equation*}
844 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
845 r $. The above can be rearranged to yield, using Leibnitz's theorem:
846
847 \begin{equation}
848 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
849 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
850 \label{eq:free-surface}
851 \end{equation}%
852 where we have incorporated a source term.
853
854 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
855 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
856 be written
857 \begin{equation}
858 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
859 \label{eq:phi-surf}
860 \end{equation}%
861 where $b_{s}$ is the buoyancy at the surface.
862
863 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%
864 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
865 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
866 surface' and `rigid lid' approaches are available.
867
868 \subsubsection{Non-hydrostatic pressure}
869
870 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
871 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
872 (\ref{incompressible}), we deduce that:
873
874 \begin{equation}
875 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
876 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
877 \vec{\mathbf{F}} \label{eq:3d-invert}
878 \end{equation}
879
880 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
881 subject to appropriate choice of boundary conditions. This method is usually
882 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
883 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
884 the 3-d problem does not need to be solved.
885
886 \paragraph{Boundary Conditions}
887
888 We apply the condition of no normal flow through all solid boundaries - the
889 coasts (in the ocean) and the bottom:
890
891 \begin{equation}
892 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
893 \end{equation}
894 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
895 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
896 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
897 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
898 tangential component of velocity, $v_{T}$, at all solid boundaries,
899 depending on the form chosen for the dissipative terms in the momentum
900 equations - see below.
901
902 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
903
904 \begin{equation}
905 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
906 \label{eq:inhom-neumann-nh}
907 \end{equation}
908 where
909
910 \begin{equation*}
911 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
912 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
913 \end{equation*}%
914 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
915 (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
916 exploit classical 3D potential theory and, by introducing an appropriately
917 chosen $\delta $-function sheet of `source-charge', replace the inhomogenous
918 boundary condition on pressure by a homogeneous one. The source term $rhs$
919 in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$
920 By simultaneously setting $%
921 \begin{array}{l}
922 \widehat{n}.\vec{\mathbf{F}}%
923 \end{array}%
924 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
925 self-consistent but simpler homogenised Elliptic problem is obtained:
926
927 \begin{equation*}
928 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
929 \end{equation*}%
930 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
931 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%
932 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
933
934 \begin{equation}
935 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
936 \end{equation}
937
938 If the flow is `close' to hydrostatic balance then the 3-d inversion
939 converges rapidly because $\phi _{nh}\ $is then only a small correction to
940 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
941
942 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
943 does not vanish at $r=R_{moving}$, and so refines the pressure there.
944
945 \subsection{Forcing/dissipation}
946
947 \subsubsection{Forcing}
948
949 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
950 `physics packages' described in detail in chapter ??.
951
952 \subsubsection{Dissipation}
953
954 \paragraph{Momentum}
955
956 Many forms of momentum dissipation are available in the model. Laplacian and
957 biharmonic frictions are commonly used:
958
959 \begin{equation}
960 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
961 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
962 \end{equation}
963 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
964 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
965 friction. These coefficients are the same for all velocity components.
966
967 \paragraph{Tracers}
968
969 The mixing terms for the temperature and salinity equations have a similar
970 form to that of momentum except that the diffusion tensor can be
971 non-diagonal and have varying coefficients. $\qquad $%
972 \begin{equation}
973 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
974 _{h}^{4}(T,S) \label{eq:diffusion}
975 \end{equation}
976 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
977 horizontal coefficient for biharmonic diffusion. In the simplest case where
978 the subgrid-scale fluxes of heat and salt are parameterized with constant
979 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
980 reduces to a diagonal matrix with constant coefficients:
981
982 \begin{equation}
983 \qquad \qquad \qquad \qquad K=\left(
984 \begin{array}{ccc}
985 K_{h} & 0 & 0 \\
986 0 & K_{h} & 0 \\
987 0 & 0 & K_{v}%
988 \end{array}
989 \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
990 \end{equation}
991 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
992 coefficients. These coefficients are the same for all tracers (temperature,
993 salinity ... ).
994
995 \subsection{Vector invariant form}
996
997 For some purposes it is advantageous to write momentum advection in eq(\ref%
998 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
999
1000 \begin{equation}
1001 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
1002 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %
1003 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1004 \label{eq:vi-identity}
1005 \end{equation}%
1006 This permits alternative numerical treatments of the non-linear terms based
1007 on their representation as a vorticity flux. Because gradients of coordinate
1008 vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1009 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%
1010 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1011 about the geometry is contained in the areas and lengths of the volumes used
1012 to discretize the model.
1013
1014 \subsection{Adjoint}
1015
1016 Tangent linear and adoint counterparts of the forward model and described in
1017 Chapter 5.
1018
1019 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
1020 % $Name: $
1021
1022 \section{Appendix ATMOSPHERE}
1023
1024 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1025 coordinates}
1026
1027 \label{sect-hpe-p}
1028
1029 The hydrostatic primitive equations (HPEs) in p-coordinates are:
1030 \begin{eqnarray}
1031 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1032 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1033 \label{eq:atmos-mom} \\
1034 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1035 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1036 \partial p} &=&0 \label{eq:atmos-cont} \\
1037 p\alpha &=&RT \label{eq:atmos-eos} \\
1038 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1039 \end{eqnarray}%
1040 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1041 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1042 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1043 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1044 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
1045 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%
1046 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%
1047 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
1048 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1049
1050 It is convenient to cast the heat equation in terms of potential temperature
1051 $\theta $ so that it looks more like a generic conservation law.
1052 Differentiating (\ref{eq:atmos-eos}) we get:
1053 \begin{equation*}
1054 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1055 \end{equation*}%
1056 which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%
1057 c_{p}=c_{v}+R$, gives:
1058 \begin{equation}
1059 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1060 \label{eq-p-heat-interim}
1061 \end{equation}%
1062 Potential temperature is defined:
1063 \begin{equation}
1064 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1065 \end{equation}%
1066 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1067 we will make use of the Exner function $\Pi (p)$ which defined by:
1068 \begin{equation}
1069 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1070 \end{equation}%
1071 The following relations will be useful and are easily expressed in terms of
1072 the Exner function:
1073 \begin{equation*}
1074 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1075 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
1076 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
1077 \frac{Dp}{Dt}
1078 \end{equation*}%
1079 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1080
1081 The heat equation is obtained by noting that
1082 \begin{equation*}
1083 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1084 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1085 \end{equation*}
1086 and on substituting into (\ref{eq-p-heat-interim}) gives:
1087 \begin{equation}
1088 \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1089 \label{eq:potential-temperature-equation}
1090 \end{equation}
1091 which is in conservative form.
1092
1093 For convenience in the model we prefer to step forward (\ref%
1094 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1095
1096 \subsubsection{Boundary conditions}
1097
1098 The upper and lower boundary conditions are :
1099 \begin{eqnarray}
1100 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1101 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1102 \label{eq:boundary-condition-atmosphere}
1103 \end{eqnarray}
1104 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1105 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1106 surface ($\phi $ is imposed and $\omega \neq 0$).
1107
1108 \subsubsection{Splitting the geo-potential}
1109
1110 For the purposes of initialization and reducing round-off errors, the model
1111 deals with perturbations from reference (or ``standard'') profiles. For
1112 example, the hydrostatic geopotential associated with the resting atmosphere
1113 is not dynamically relevant and can therefore be subtracted from the
1114 equations. The equations written in terms of perturbations are obtained by
1115 substituting the following definitions into the previous model equations:
1116 \begin{eqnarray}
1117 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1118 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1119 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1120 \end{eqnarray}
1121 The reference state (indicated by subscript ``0'') corresponds to
1122 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1123 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1124 _{o}(p_{o})=g~Z_{topo}$, defined:
1125 \begin{eqnarray*}
1126 \theta _{o}(p) &=&f^{n}(p) \\
1127 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1128 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1129 \end{eqnarray*}
1130 %\begin{eqnarray*}
1131 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1132 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1133 %\end{eqnarray*}
1134
1135 The final form of the HPE's in p coordinates is then:
1136 \begin{eqnarray}
1137 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1138 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1139 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1140 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1141 \partial p} &=&0 \\
1142 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1143 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1144 \end{eqnarray}
1145
1146 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_ocean.tex,v 1.2 2001/09/11 14:39:38 cnh Exp $
1147 % $Name: $
1148
1149 \section{Appendix OCEAN}
1150
1151 \subsection{Equations of motion for the ocean}
1152
1153 We review here the method by which the standard (Boussinesq, incompressible)
1154 HPE's for the ocean written in z-coordinates are obtained. The
1155 non-Boussinesq equations for oceanic motion are:
1156 \begin{eqnarray}
1157 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1158 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1159 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1160 &=&\epsilon _{nh}\mathcal{F}_{w} \\
1161 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
1162 _{h}+\frac{\partial w}{\partial z} &=&0 \\
1163 \rho &=&\rho (\theta ,S,p) \\
1164 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1165 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1166 \end{eqnarray}%
1167 These equations permit acoustics modes, inertia-gravity waves,
1168 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1169 mode. As written, they cannot be integrated forward consistently - if we
1170 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1171 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%
1172 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1173 therefore necessary to manipulate the system as follows. Differentiating the
1174 EOS (equation of state) gives:
1175
1176 \begin{equation}
1177 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1178 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1179 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1180 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1181 \end{equation}
1182
1183 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1184 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%
1185 {eq-zns-cont} gives:
1186 \begin{equation}
1187 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1188 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1189 \end{equation}
1190 where we have used an approximation sign to indicate that we have assumed
1191 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1192 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1193 can be explicitly integrated forward:
1194 \begin{eqnarray}
1195 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1196 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1197 \label{eq-cns-hmom} \\
1198 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1199 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1200 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1201 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1202 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1203 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1204 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1205 \end{eqnarray}
1206
1207 \subsubsection{Compressible z-coordinate equations}
1208
1209 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1210 wherever it appears in a product (ie. non-linear term) - this is the
1211 `Boussinesq assumption'. The only term that then retains the full variation
1212 in $\rho $ is the gravitational acceleration:
1213 \begin{eqnarray}
1214 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1215 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1216 \label{eq-zcb-hmom} \\
1217 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1218 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1219 \label{eq-zcb-hydro} \\
1220 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
1221 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1222 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1223 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1224 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1225 \end{eqnarray}
1226 These equations still retain acoustic modes. But, because the
1227 ``compressible'' terms are linearized, the pressure equation \ref%
1228 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1229 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1230 These are the \emph{truly} compressible Boussinesq equations. Note that the
1231 EOS must have the same pressure dependency as the linearized pressure term,
1232 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
1233 c_{s}^{2}}$, for consistency.
1234
1235 \subsubsection{`Anelastic' z-coordinate equations}
1236
1237 The anelastic approximation filters the acoustic mode by removing the
1238 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
1239 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
1240 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1241 continuity and EOS. A better solution is to change the dependency on
1242 pressure in the EOS by splitting the pressure into a reference function of
1243 height and a perturbation:
1244 \begin{equation*}
1245 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1246 \end{equation*}
1247 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1248 differentiating the EOS, the continuity equation then becomes:
1249 \begin{equation*}
1250 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
1251 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
1252 \frac{\partial w}{\partial z}=0
1253 \end{equation*}
1254 If the time- and space-scales of the motions of interest are longer than
1255 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
1256 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1257 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
1258 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1259 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1260 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1261 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1262 anelastic continuity equation:
1263 \begin{equation}
1264 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
1265 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1266 \end{equation}
1267 A slightly different route leads to the quasi-Boussinesq continuity equation
1268 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
1269 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
1270 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1271 \begin{equation}
1272 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1273 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1274 \end{equation}
1275 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1276 equation if:
1277 \begin{equation}
1278 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1279 \end{equation}
1280 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1281 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
1282 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1283 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1284 then:
1285 \begin{eqnarray}
1286 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1287 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1288 \label{eq-zab-hmom} \\
1289 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1290 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1291 \label{eq-zab-hydro} \\
1292 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1293 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1294 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1295 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1296 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1297 \end{eqnarray}
1298
1299 \subsubsection{Incompressible z-coordinate equations}
1300
1301 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1302 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1303 yield the ``truly'' incompressible Boussinesq equations:
1304 \begin{eqnarray}
1305 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1306 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1307 \label{eq-ztb-hmom} \\
1308 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
1309 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1310 \label{eq-ztb-hydro} \\
1311 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1312 &=&0 \label{eq-ztb-cont} \\
1313 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1314 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1315 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1316 \end{eqnarray}
1317 where $\rho _{c}$ is a constant reference density of water.
1318
1319 \subsubsection{Compressible non-divergent equations}
1320
1321 The above ``incompressible'' equations are incompressible in both the flow
1322 and the density. In many oceanic applications, however, it is important to
1323 retain compressibility effects in the density. To do this we must split the
1324 density thus:
1325 \begin{equation*}
1326 \rho =\rho _{o}+\rho ^{\prime }
1327 \end{equation*}%
1328 We then assert that variations with depth of $\rho _{o}$ are unimportant
1329 while the compressible effects in $\rho ^{\prime }$ are:
1330 \begin{equation*}
1331 \rho _{o}=\rho _{c}
1332 \end{equation*}%
1333 \begin{equation*}
1334 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1335 \end{equation*}%
1336 This then yields what we can call the semi-compressible Boussinesq
1337 equations:
1338 \begin{eqnarray}
1339 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1340 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
1341 \mathcal{F}}} \label{eq:ocean-mom} \\
1342 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1343 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1344 \label{eq:ocean-wmom} \\
1345 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1346 &=&0 \label{eq:ocean-cont} \\
1347 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1348 \\
1349 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1350 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1351 \end{eqnarray}%
1352 Note that the hydrostatic pressure of the resting fluid, including that
1353 associated with $\rho _{c}$, is subtracted out since it has no effect on the
1354 dynamics.
1355
1356 Though necessary, the assumptions that go into these equations are messy
1357 since we essentially assume a different EOS for the reference density and
1358 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1359 _{nh}=0$ form of these equations that are used throughout the ocean modeling
1360 community and referred to as the primitive equations (HPE).
1361
1362 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_operators.tex,v 1.1.1.1 2001/08/08 16:16:19 adcroft Exp $
1363 % $Name: $
1364
1365 \section{Appendix:OPERATORS}
1366
1367 \subsection{Coordinate systems}
1368
1369 \subsubsection{Spherical coordinates}
1370
1371 In spherical coordinates, the velocity components in the zonal, meridional
1372 and vertical direction respectively, are given by (see Fig.2) :
1373
1374 \begin{equation*}
1375 u=r\cos \phi \frac{D\lambda }{Dt}
1376 \end{equation*}
1377
1378 \begin{equation*}
1379 v=r\frac{D\phi }{Dt}\qquad
1380 \end{equation*}
1381 $\qquad \qquad \qquad \qquad $
1382
1383 \begin{equation*}
1384 \dot{r}=\frac{Dr}{Dt}
1385 \end{equation*}
1386
1387 Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1388 distance of the particle from the center of the earth, $\Omega $ is the
1389 angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1390
1391 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1392 spherical coordinates:
1393
1394 \begin{equation*}
1395 \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
1396 ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
1397 \right)
1398 \end{equation*}
1399
1400 \begin{equation*}
1401 \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1402 \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1403 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1404 \end{equation*}
1405
1406 %%%% \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22