/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Thu Oct 11 19:36:56 2001 UTC revision 1.8 by cnh, Thu Oct 25 15:24:01 2001 UTC
# Line 32  Line 32 
32  %tci%\tableofcontents  %tci%\tableofcontents
33    
34    
 \part{MIT GCM basics}  
   
35  % Section: Overview  % Section: Overview
36    
37  % $Header$  % $Header$
# Line 56  MITgcm has a number of novel aspects: Line 54  MITgcm has a number of novel aspects:
54  \begin{itemize}  \begin{itemize}
55  \item it can be used to study both atmospheric and oceanic phenomena; one  \item it can be used to study both atmospheric and oceanic phenomena; one
56  hydrodynamical kernel is used to drive forward both atmospheric and oceanic  hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57  models - see fig  models - see fig \ref{fig:onemodel}
 \marginpar{  
 Fig.1 One model}\ref{fig:onemodel}  
58    
59  %% CNHbegin  %% CNHbegin
60  \input{part1/one_model_figure}  \input{part1/one_model_figure}
61  %% CNHend  %% CNHend
62    
63  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
64  small-scale and large scale processes - see fig  small-scale and large scale processes - see fig \ref{fig:all-scales}
 \marginpar{  
 Fig.2 All scales}\ref{fig:all-scales}  
65    
66  %% CNHbegin  %% CNHbegin
67  \input{part1/all_scales_figure}  \input{part1/all_scales_figure}
# Line 75  Fig.2 All scales}\ref{fig:all-scales} Line 69  Fig.2 All scales}\ref{fig:all-scales}
69    
70  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
71  discretization and support for the treatment of irregular geometries using  discretization and support for the treatment of irregular geometries using
72  orthogonal curvilinear grids and shaved cells - see fig  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
 \marginpar{  
 Fig.3 Finite volumes}\ref{fig:finite-volumes}  
73    
74  %% CNHbegin  %% CNHbegin
75  \input{part1/fvol_figure}  \input{part1/fvol_figure}
# Line 96  listed in an Appendix. Line 88  listed in an Appendix.
88    
89  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
90  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
 \pagebreak  
91    
92  % $Header$  % $Header$
93  % $Name$  % $Name$
# Line 105  give a feel for the wide range of proble Line 96  give a feel for the wide range of proble
96    
97  The MITgcm has been designed and used to model a wide range of phenomena,  The MITgcm has been designed and used to model a wide range of phenomena,
98  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
99  atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
100  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
101  of them here. A more detailed description of the underlying formulation,  of them here. A more detailed description of the underlying formulation,
102  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
# Line 116  described in detail in the documentation Line 107  described in detail in the documentation
107    
108  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
109    
110  A novel feature of MITgcm is its ability to simulate both atmospheric and  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
111  oceanographic flows at both small and large scales.  both atmospheric and oceanographic flows at both small and large scales.
112    
113  Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$  Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
114  temperature field obtained using the atmospheric isomorph of MITgcm run at  temperature field obtained using the atmospheric isomorph of MITgcm run at
115  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
116  (blue) and warm air along an equatorial band (red). Fully developed  (blue) and warm air along an equatorial band (red). Fully developed
# Line 135  there are no mountains or land-sea contr Line 126  there are no mountains or land-sea contr
126  %% CNHend  %% CNHend
127    
128  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
129  globe permitting a uniform gridding and obviated the need to fourier filter.  globe permitting a uniform gridding and obviated the need to Fourier filter.
130  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
131  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
132    
133  Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal  Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
134  wind and meridional overturning streamfunction from a 20-level version of  wind from a 20-level configuration of
135  the model. It compares favorable with more conventional spatial  the model. It compares favorable with more conventional spatial
136  discretization approaches.  discretization approaches. The two plots show the field calculated using the
137    cube-sphere grid and the flow calculated using a regular, spherical polar
138  A regular spherical lat-lon grid can also be used.  latitude-longitude grid. Both grids are supported within the model.
139    
140  %% CNHbegin  %% CNHbegin
141  \input{part1/hs_zave_u_figure}  \input{part1/hs_zave_u_figure}
# Line 160  diffusive patterns of ocean currents. Bu Line 151  diffusive patterns of ocean currents. Bu
151  increased until the baroclinic instability process is resolved, numerical  increased until the baroclinic instability process is resolved, numerical
152  solutions of a different and much more realistic kind, can be obtained.  solutions of a different and much more realistic kind, can be obtained.
153    
154  Fig. ?.? shows the surface temperature and velocity field obtained from  Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
155  MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$  field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
156    resolution on a $lat-lon$
157  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
158  (to avoid the converging of meridian in northern latitudes). 21 vertical  (to avoid the converging of meridian in northern latitudes). 21 vertical
159  levels are used in the vertical with a `lopped cell' representation of  levels are used in the vertical with a `lopped cell' representation of
160  topography. The development and propagation of anomalously warm and cold  topography. The development and propagation of anomalously warm and cold
161  eddies can be clearly been seen in the Gulf Stream region. The transport of  eddies can be clearly seen in the Gulf Stream region. The transport of
162  warm water northward by the mean flow of the Gulf Stream is also clearly  warm water northward by the mean flow of the Gulf Stream is also clearly
163  visible.  visible.
164    
# Line 177  visible. Line 169  visible.
169    
170  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
171    
172  Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
173    the surface of a 4$^{\circ }$
174  global ocean model run with 15 vertical levels. Lopped cells are used to  global ocean model run with 15 vertical levels. Lopped cells are used to
175  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
176  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
# Line 185  mixed boundary conditions on temperature Line 178  mixed boundary conditions on temperature
178  transfer properties of ocean eddies, convection and mixing is parameterized  transfer properties of ocean eddies, convection and mixing is parameterized
179  in this model.  in this model.
180    
181  Fig.E2b shows the meridional overturning circulation of the global ocean in  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
182  Sverdrups.  circulation of the global ocean in Sverdrups.
183    
184  %%CNHbegin  %%CNHbegin
185  \input{part1/global_circ_figure}  \input{part1/global_circ_figure}
# Line 198  Dense plumes generated by localized cool Line 191  Dense plumes generated by localized cool
191  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
192  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
193  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
194  eddies. The simulation shown in the figure (blue is cold dense fluid, red is  eddies. The simulation shown in the figure \ref{fig::convect-and-topo}
195    (blue is cold dense fluid, red is
196  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
197  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
198  slope but is deflected along the slope by rotation. It is found that  slope but is deflected along the slope by rotation. It is found that
# Line 217  presence of complex geometry makes it an Line 211  presence of complex geometry makes it an
211  dynamics and mixing in oceanic canyons and ridges driven by large amplitude  dynamics and mixing in oceanic canyons and ridges driven by large amplitude
212  barotropic tidal currents imposed through open boundary conditions.  barotropic tidal currents imposed through open boundary conditions.
213    
214  Fig. ?.? shows the influence of cross-slope topographic variations on  Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
215    topographic variations on
216  internal wave breaking - the cross-slope velocity is in color, the density  internal wave breaking - the cross-slope velocity is in color, the density
217  contoured. The internal waves are excited by application of open boundary  contoured. The internal waves are excited by application of open boundary
218  conditions on the left.\ They propagate to the sloping boundary (represented  conditions on the left. They propagate to the sloping boundary (represented
219  using MITgcm's finite volume spatial discretization) where they break under  using MITgcm's finite volume spatial discretization) where they break under
220  nonhydrostatic dynamics.  nonhydrostatic dynamics.
221    
# Line 234  Forward and tangent linear counterparts Line 229  Forward and tangent linear counterparts
229  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
230  data assimilation studies.  data assimilation studies.
231    
232  As one example of application of the MITgcm adjoint, Fig.E4 maps the  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
233  gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
234  of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $  of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}
235  \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is  at 60$^{\circ }$N and $
236    \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
237    a 100 year period. We see that $J$ is
238  sensitive to heat fluxes over the Labrador Sea, one of the important sources  sensitive to heat fluxes over the Labrador Sea, one of the important sources
239  of deep water for the thermohaline circulations. This calculation also  of deep water for the thermohaline circulations. This calculation also
240  yields sensitivities to all other model parameters.  yields sensitivities to all other model parameters.
# Line 253  ocean circulation. An appropriately defi Line 250  ocean circulation. An appropriately defi
250  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
251  insitu) over an interval of time, is minimized by adjusting `control  insitu) over an interval of time, is minimized by adjusting `control
252  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
253  etc. Figure ?.? shows an estimate of the time-mean surface elevation of the  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean
254  ocean obtained by bringing the model in to consistency with altimetric and  surface elevation of the ocean obtained by bringing the model in to
255  in-situ observations over the period 1992-1997.  consistency with altimetric and in-situ observations over the period
256    1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}
257    
258  %% CNHbegin  %% CNHbegin
259  \input{part1/globes_figure}  \input{part1/globes_figure}
# Line 266  in-situ observations over the period 199 Line 264  in-situ observations over the period 199
264  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the ocean. For
265  example one can study the effects of interannual changes in meteorological  example one can study the effects of interannual changes in meteorological
266  forcing and upper ocean circulation on the fluxes of carbon dioxide and  forcing and upper ocean circulation on the fluxes of carbon dioxide and
267  oxygen between the ocean and atmosphere. The figure shows the annual air-sea  oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
268  flux of oxygen and its relation to density outcrops in the southern oceans  the annual air-sea flux of oxygen and its relation to density outcrops in
269  from a single year of a global, interannually varying simulation.  the southern oceans from a single year of a global, interannually varying
270    simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
271    telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
272    
273  %%CNHbegin  %%CNHbegin
274  \input{part1/biogeo_figure}  \input{part1/biogeo_figure}
# Line 276  from a single year of a global, interann Line 276  from a single year of a global, interann
276    
277  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
278    
279  Figure ?.? shows MITgcm being used to simulate a laboratory experiment  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
280  enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
281  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
282  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
283  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
284  unstable. The stratification and depth of penetration of the lens is  unstable. The stratification and depth of penetration of the lens is
285  arrested by its instability in a process analogous to that whic sets the  arrested by its instability in a process analogous to that which sets the
286  stratification of the ACC.  stratification of the ACC.
287    
288  %%CNHbegin  %%CNHbegin
# Line 296  stratification of the ACC. Line 296  stratification of the ACC.
296    
297  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
298  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
299  respective fluids - see fig.4  respective fluids - see figure \ref{fig:isomorphic-equations}.
300  \marginpar{  One system of hydrodynamical equations is written down
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  
301  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
302  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
303  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
304  modeling the atmosphere and height, $z$, if we are modeling the ocean.  modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})
305    and height, $z$, if we are modeling the ocean (right hand side of figure
306    \ref{fig:isomorphic-equations}).
307    
308  %%CNHbegin  %%CNHbegin
309  \input{part1/zandpcoord_figure.tex}  \input{part1/zandpcoord_figure.tex}
# Line 314  velocity $\vec{\mathbf{v}}$, active trac Line 315  velocity $\vec{\mathbf{v}}$, active trac
315  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
316  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
317  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
318  a generic vertical coordinate, $r$, see fig.5  a generic vertical coordinate, $r$, so that the appropriate
319  \marginpar{  kinematic boundary conditions can be applied isomorphically
320  Fig.5 The vertical coordinate of model}:  see figure \ref{fig:zandp-vert-coord}.
321    
322  %%CNHbegin  %%CNHbegin
323  \input{part1/vertcoord_figure.tex}  \input{part1/vertcoord_figure.tex}
# Line 325  Fig.5 The vertical coordinate of model}: Line 326  Fig.5 The vertical coordinate of model}:
326  \begin{equation*}  \begin{equation*}
327  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
328  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
329  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
330  \end{equation*}  \end{equation*}
331    
332  \begin{equation*}  \begin{equation}
333  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
334  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
335  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
336  \end{equation*}  \end{equation}
337    
338  \begin{equation}  \begin{equation}
339  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
340  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
341  \end{equation}  \end{equation}
342    
343  \begin{equation*}  \begin{equation}
344  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
345  \end{equation*}  \end{equation}
346    
347  \begin{equation*}  \begin{equation}
348  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
349  \end{equation*}  \label{eq:potential_temperature}
350    \end{equation}
351    
352  \begin{equation*}  \begin{equation}
353  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
354  \end{equation*}  \label{eq:humidtity_salt}
355    \end{equation}
356    
357  Here:  Here:
358    
# Line 413  S\text{ is specific humidity in the atmo Line 416  S\text{ is specific humidity in the atmo
416  \end{equation*}  \end{equation*}
417    
418  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
419  extensive `physics' packages for atmosphere and ocean described in Chapter 6.  `physics' and forcing packages for atmosphere and ocean. These are described
420    in later chapters.
421    
422  \subsection{Kinematic Boundary conditions}  \subsection{Kinematic Boundary conditions}
423    
424  \subsubsection{vertical}  \subsubsection{vertical}
425    
426  at fixed and moving $r$ surfaces we set (see fig.5):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
427    
428  \begin{equation}  \begin{equation}
429  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
# Line 450  where $\vec{\mathbf{n}}$ is the normal t Line 454  where $\vec{\mathbf{n}}$ is the normal t
454    
455  \subsection{Atmosphere}  \subsection{Atmosphere}
456    
457  In the atmosphere, see fig.5, we interpret:  In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
458    
459  \begin{equation}  \begin{equation}
460  r=p\text{ is the pressure}  \label{eq:atmos-r}  r=p\text{ is the pressure}  \label{eq:atmos-r}
# Line 521  The boundary conditions at top and botto Line 525  The boundary conditions at top and botto
525  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
526  \end{eqnarray}  \end{eqnarray}
527    
528  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty})
529  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
530  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
531    
532  \subsection{Ocean}  \subsection{Ocean}
# Line 558  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 562  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
562  \end{eqnarray}  \end{eqnarray}
563  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
564    
565  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set
566    of oceanic equations
567  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
568  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
569    
# Line 571  Let us separate $\phi $ in to surface, h Line 576  Let us separate $\phi $ in to surface, h
576  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
577  \label{eq:phi-split}  \label{eq:phi-split}
578  \end{equation}  \end{equation}
579  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
580    
581  \begin{equation}  \begin{equation}
582  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 604  discussion: Line 609  discussion:
609  \left.  \left.
610  \begin{tabular}{l}  \begin{tabular}{l}
611  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
612  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
613  \\  \\
614  $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $  $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
615  \\  \\
616  $+\mathcal{F}_{u}$  $+\mathcal{F}_{u}$
617  \end{tabular}  \end{tabular}
# Line 624  $+\mathcal{F}_{u}$ Line 629  $+\mathcal{F}_{u}$
629  \left.  \left.
630  \begin{tabular}{l}  \begin{tabular}{l}
631  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
632  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
633  $ \\  $ \\
634  $-\left\{ -2\Omega u\sin lat\right\} $ \\  $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
635  $+\mathcal{F}_{v}$  $+\mathcal{F}_{v}$
636  \end{tabular}  \end{tabular}
637  \ \right\} \left\{  \ \right\} \left\{
# Line 645  $+\mathcal{F}_{v}$ Line 650  $+\mathcal{F}_{v}$
650  \begin{tabular}{l}  \begin{tabular}{l}
651  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
652  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
653  ${+}\underline{{2\Omega u\cos lat}}$ \\  ${+}\underline{{2\Omega u\cos \varphi}}$ \\
654  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
655  \end{tabular}  \end{tabular}
656  \ \right\} \left\{  \ \right\} \left\{
# Line 659  $\underline{\underline{\mathcal{F}_{\dot Line 664  $\underline{\underline{\mathcal{F}_{\dot
664  \end{equation}  \end{equation}
665  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
666    
667  In the above `${r}$' is the distance from the center of the earth and `$lat$  In the above `${r}$' is the distance from the center of the earth and `$\varphi$
668  ' is latitude.  ' is latitude.
669    
670  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
671  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
672    
673  %%CNHbegin  %%CNHbegin
674  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 684  r $ in, for example, (\ref{eq:gu-speheri Line 687  r $ in, for example, (\ref{eq:gu-speheri
687  the radius of the earth.  the radius of the earth.
688    
689  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
690    \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
691    
692  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
693    
# Line 697  computed at all other levels by integrat Line 701  computed at all other levels by integrat
701    
702  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
703  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
704  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic  \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
705  contribution to the pressure field: only the terms underlined twice in Eqs. (  contribution to the pressure field: only the terms underlined twice in Eqs. (
706  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
707  and, simultaneously, the shallow atmosphere approximation is relaxed. In  and, simultaneously, the shallow atmosphere approximation is relaxed. In
# Line 706  variation of the radial position of a pa Line 710  variation of the radial position of a pa
710  vertical momentum equation (\ref{eq:mom-w}) becomes:  vertical momentum equation (\ref{eq:mom-w}) becomes:
711    
712  \begin{equation*}  \begin{equation*}
713  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
714  \end{equation*}  \end{equation*}
715  making a small correction to the hydrostatic pressure.  making a small correction to the hydrostatic pressure.
716    
# Line 727  In the non-hydrostatic ocean model all t Line 731  In the non-hydrostatic ocean model all t
731  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
732  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
733  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
734  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
735  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
736  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
737  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 776  coordinates are supported - see eqs(\ref Line 780  coordinates are supported - see eqs(\ref
780  \subsection{Solution strategy}  \subsection{Solution strategy}
781    
782  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
783  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
784  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
785  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
786  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
787  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 792  stepping forward the vertical momentum e Line 795  stepping forward the vertical momentum e
795  %%CNHend  %%CNHend
796    
797  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
798  course, some complication that goes with the inclusion of $\cos \phi \ $  course, some complication that goes with the inclusion of $\cos \varphi \ $
799  Coriolis terms and the relaxation of the shallow atmosphere approximation.  Coriolis terms and the relaxation of the shallow atmosphere approximation.
800  But this leads to negligible increase in computation. In \textbf{NH}, in  But this leads to negligible increase in computation. In \textbf{NH}, in
801  contrast, one additional elliptic equation - a three-dimensional one - must  contrast, one additional elliptic equation - a three-dimensional one - must
# Line 802  Marshall et al, 1997) resulting in a non Line 805  Marshall et al, 1997) resulting in a non
805  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
806    
807  \subsection{Finding the pressure field}  \subsection{Finding the pressure field}
808    \label{sec:finding_the_pressure_field}
809    
810  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
811  pressure field must be obtained diagnostically. We proceed, as before, by  pressure field must be obtained diagnostically. We proceed, as before, by
# Line 834  atmospheric pressure pushing down on the Line 838  atmospheric pressure pushing down on the
838    
839  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
840    
841  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
842  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
843    
844  \begin{equation*}  \begin{equation*}
845  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 860  r $. The above can be rearranged to yiel Line 864  r $. The above can be rearranged to yiel
864  where we have incorporated a source term.  where we have incorporated a source term.
865    
866  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
867  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
868  be written  be written
869  \begin{equation}  \begin{equation}
870  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 868  be written Line 872  be written
872  \end{equation}  \end{equation}
873  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
874    
875  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
876  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
877  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
878  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
879    
880  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
881    
882  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
883  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
884  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
885    
886  \begin{equation}  \begin{equation}
887  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 907  tangential component of velocity, $v_{T} Line 911  tangential component of velocity, $v_{T}
911  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
912  equations - see below.  equations - see below.
913    
914  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
915    
916  \begin{equation}  \begin{equation}
917  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 947  If the flow is `close' to hydrostatic ba Line 951  If the flow is `close' to hydrostatic ba
951  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
952  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
953    
954  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
955  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
956    
957  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 955  does not vanish at $r=R_{moving}$, and s Line 959  does not vanish at $r=R_{moving}$, and s
959  \subsubsection{Forcing}  \subsubsection{Forcing}
960    
961  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
962  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
963    
964  \subsubsection{Dissipation}  \subsubsection{Dissipation}
965    
# Line 1003  salinity ... ). Line 1007  salinity ... ).
1007  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1008    
1009  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in eq(\ref
1010  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1011    
1012  \begin{equation}  \begin{equation}
1013  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1021  to discretize the model. Line 1025  to discretize the model.
1025    
1026  \subsection{Adjoint}  \subsection{Adjoint}
1027    
1028  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1029  in Chapter 5.  in Chapter 5.
1030    
1031  % $Header$  % $Header$
# Line 1048  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} Line 1052  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt}
1052  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1053  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1054  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1055  derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is  derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1056  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1057  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1058  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
# Line 1143  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined:
1147  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1148  \begin{eqnarray}  \begin{eqnarray}
1149  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1150  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1151  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1152  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1153  \partial p} &=&0 \\  \partial p} &=&0 \\
1154  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1155  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1156  \end{eqnarray}  \end{eqnarray}
1157    
1158  % $Header$  % $Header$
# Line 1167  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1171  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1172  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1173  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1174  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1175  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1176  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1177  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1178    \label{eq:non-boussinesq}
1179  \end{eqnarray}  \end{eqnarray}
1180  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1181  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
# Line 1189  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1194  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1194  \end{equation}  \end{equation}
1195    
1196  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1197  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1198  \begin{equation}  \begin{equation}
1199  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1200  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}
# Line 1380  In spherical coordinates, the velocity c Line 1384  In spherical coordinates, the velocity c
1384  and vertical direction respectively, are given by (see Fig.2) :  and vertical direction respectively, are given by (see Fig.2) :
1385    
1386  \begin{equation*}  \begin{equation*}
1387  u=r\cos \phi \frac{D\lambda }{Dt}  u=r\cos \varphi \frac{D\lambda }{Dt}
1388  \end{equation*}  \end{equation*}
1389    
1390  \begin{equation*}  \begin{equation*}
1391  v=r\frac{D\phi }{Dt}\qquad  v=r\frac{D\varphi }{Dt}\qquad
1392  \end{equation*}  \end{equation*}
1393  $\qquad \qquad \qquad \qquad $  $\qquad \qquad \qquad \qquad $
1394    
# Line 1392  $\qquad \qquad \qquad \qquad $ Line 1396  $\qquad \qquad \qquad \qquad $
1396  \dot{r}=\frac{Dr}{Dt}  \dot{r}=\frac{Dr}{Dt}
1397  \end{equation*}  \end{equation*}
1398    
1399  Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial  Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1400  distance of the particle from the center of the earth, $\Omega $ is the  distance of the particle from the center of the earth, $\Omega $ is the
1401  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1402    
# Line 1400  The `grad' ($\nabla $) and `div' ($\nabl Line 1404  The `grad' ($\nabla $) and `div' ($\nabl
1404  spherical coordinates:  spherical coordinates:
1405    
1406  \begin{equation*}  \begin{equation*}
1407  \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }  \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1408  ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}  ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1409  \right)  \right)
1410  \end{equation*}  \end{equation*}
1411    
1412  \begin{equation*}  \begin{equation*}
1413  \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial  \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1414  \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1415  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1416  \end{equation*}  \end{equation*}
1417    

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22