37 |
% $Header$ |
% $Header$ |
38 |
% $Name$ |
% $Name$ |
39 |
|
|
40 |
\section{Introduction} |
This document provides the reader with the information necessary to |
|
|
|
|
This documentation provides the reader with the information necessary to |
|
41 |
carry out numerical experiments using MITgcm. It gives a comprehensive |
carry out numerical experiments using MITgcm. It gives a comprehensive |
42 |
description of the continuous equations on which the model is based, the |
description of the continuous equations on which the model is based, the |
43 |
numerical algorithms the model employs and a description of the associated |
numerical algorithms the model employs and a description of the associated |
47 |
both process and general circulation studies of the atmosphere and ocean are |
both process and general circulation studies of the atmosphere and ocean are |
48 |
also presented. |
also presented. |
49 |
|
|
50 |
|
\section{Introduction} |
51 |
|
|
52 |
MITgcm has a number of novel aspects: |
MITgcm has a number of novel aspects: |
53 |
|
|
54 |
\begin{itemize} |
\begin{itemize} |
84 |
\end{itemize} |
\end{itemize} |
85 |
|
|
86 |
Key publications reporting on and charting the development of the model are |
Key publications reporting on and charting the development of the model are |
87 |
listed in an Appendix. |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}: |
88 |
|
|
89 |
|
\begin{verbatim} |
90 |
|
Hill, C. and J. Marshall, (1995) |
91 |
|
Application of a Parallel Navier-Stokes Model to Ocean Circulation in |
92 |
|
Parallel Computational Fluid Dynamics |
93 |
|
In Proceedings of Parallel Computational Fluid Dynamics: Implementations |
94 |
|
and Results Using Parallel Computers, 545-552. |
95 |
|
Elsevier Science B.V.: New York |
96 |
|
|
97 |
|
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) |
98 |
|
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling |
99 |
|
J. Geophysical Res., 102(C3), 5733-5752. |
100 |
|
|
101 |
|
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) |
102 |
|
A finite-volume, incompressible Navier Stokes model for studies of the ocean |
103 |
|
on parallel computers, |
104 |
|
J. Geophysical Res., 102(C3), 5753-5766. |
105 |
|
|
106 |
|
Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) |
107 |
|
Representation of topography by shaved cells in a height coordinate ocean |
108 |
|
model |
109 |
|
Mon Wea Rev, vol 125, 2293-2315 |
110 |
|
|
111 |
|
Marshall, J., Jones, H. and C. Hill, (1998) |
112 |
|
Efficient ocean modeling using non-hydrostatic algorithms |
113 |
|
Journal of Marine Systems, 18, 115-134 |
114 |
|
|
115 |
|
Adcroft, A., Hill C. and J. Marshall: (1999) |
116 |
|
A new treatment of the Coriolis terms in C-grid models at both high and low |
117 |
|
resolutions, |
118 |
|
Mon. Wea. Rev. Vol 127, pages 1928-1936 |
119 |
|
|
120 |
|
Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) |
121 |
|
A Strategy for Terascale Climate Modeling. |
122 |
|
In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors |
123 |
|
in Meteorology, pages 406-425 |
124 |
|
World Scientific Publishing Co: UK |
125 |
|
|
126 |
|
Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) |
127 |
|
Construction of the adjoint MIT ocean general circulation model and |
128 |
|
application to Atlantic heat transport variability |
129 |
|
J. Geophysical Res., 104(C12), 29,529-29,547. |
130 |
|
|
131 |
|
\end{verbatim} |
132 |
|
|
133 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
134 |
give a feel for the wide range of problems that can be addressed using it. |
give a feel for the wide range of problems that can be addressed using it. |
146 |
numerical algorithm and implementation that lie behind these calculations is |
numerical algorithm and implementation that lie behind these calculations is |
147 |
given later. Indeed many of the illustrative examples shown below can be |
given later. Indeed many of the illustrative examples shown below can be |
148 |
easily reproduced: simply download the model (the minimum you need is a PC |
easily reproduced: simply download the model (the minimum you need is a PC |
149 |
running linux, together with a FORTRAN\ 77 compiler) and follow the examples |
running Linux, together with a FORTRAN\ 77 compiler) and follow the examples |
150 |
described in detail in the documentation. |
described in detail in the documentation. |
151 |
|
|
152 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
170 |
%% CNHend |
%% CNHend |
171 |
|
|
172 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
173 |
globe permitting a uniform gridding and obviated the need to Fourier filter. |
globe permitting a uniform griding and obviated the need to Fourier filter. |
174 |
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
175 |
grid, of which the cubed sphere is just one of many choices. |
grid, of which the cubed sphere is just one of many choices. |
176 |
|
|
207 |
visible. |
visible. |
208 |
|
|
209 |
%% CNHbegin |
%% CNHbegin |
210 |
\input{part1/ocean_gyres_figure} |
\input{part1/atl6_figure} |
211 |
%% CNHend |
%% CNHend |
212 |
|
|
213 |
|
|
235 |
ocean may be influenced by rotation when the deformation radius is smaller |
ocean may be influenced by rotation when the deformation radius is smaller |
236 |
than the width of the cooling region. Rather than gravity plumes, the |
than the width of the cooling region. Rather than gravity plumes, the |
237 |
mechanism for moving dense fluid down the shelf is then through geostrophic |
mechanism for moving dense fluid down the shelf is then through geostrophic |
238 |
eddies. The simulation shown in the figure \ref{fig::convect-and-topo} |
eddies. The simulation shown in the figure \ref{fig:convect-and-topo} |
239 |
(blue is cold dense fluid, red is |
(blue is cold dense fluid, red is |
240 |
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
241 |
trigger convection by surface cooling. The cold, dense water falls down the |
trigger convection by surface cooling. The cold, dense water falls down the |
275 |
|
|
276 |
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} |
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} |
277 |
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
278 |
of the overturning streamfunction shown in figure \ref{fig:large-scale-circ} |
of the overturning stream-function shown in figure \ref{fig:large-scale-circ} |
279 |
at 60$^{\circ }$N and $ |
at 60$^{\circ }$N and $ |
280 |
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over |
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over |
281 |
a 100 year period. We see that $J$ is |
a 100 year period. We see that $J$ is |
292 |
An important application of MITgcm is in state estimation of the global |
An important application of MITgcm is in state estimation of the global |
293 |
ocean circulation. An appropriately defined `cost function', which measures |
ocean circulation. An appropriately defined `cost function', which measures |
294 |
the departure of the model from observations (both remotely sensed and |
the departure of the model from observations (both remotely sensed and |
295 |
insitu) over an interval of time, is minimized by adjusting `control |
in-situ) over an interval of time, is minimized by adjusting `control |
296 |
parameters' such as air-sea fluxes, the wind field, the initial conditions |
parameters' such as air-sea fluxes, the wind field, the initial conditions |
297 |
etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean |
etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary |
298 |
surface elevation of the ocean obtained by bringing the model in to |
circulation and a Hopf-Muller plot of Equatorial sea-surface height. |
299 |
|
Both are obtained from assimilation bringing the model in to |
300 |
consistency with altimetric and in-situ observations over the period |
consistency with altimetric and in-situ observations over the period |
301 |
1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} |
1992-1997. |
302 |
|
|
303 |
%% CNHbegin |
%% CNHbegin |
304 |
\input{part1/globes_figure} |
\input{part1/assim_figure} |
305 |
%% CNHend |
%% CNHend |
306 |
|
|
307 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
322 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
323 |
|
|
324 |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
325 |
laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An |
326 |
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
327 |
free surface by a rotating heated disk. The combined action of mechanical |
free surface by a rotating heated disk. The combined action of mechanical |
328 |
and thermal forcing creates a lens of fluid which becomes baroclinically |
and thermal forcing creates a lens of fluid which becomes baroclinically |
346 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
347 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
whether the atmosphere or ocean is being studied. Thus, for example, the |
348 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
349 |
modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) |
modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations}) |
350 |
and height, $z$, if we are modeling the ocean (right hand side of figure |
and height, $z$, if we are modeling the ocean (left hand side of figure |
351 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
352 |
|
|
353 |
%%CNHbegin |
%%CNHbegin |
396 |
|
|
397 |
\begin{equation} |
\begin{equation} |
398 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
399 |
\label{eq:humidtity_salt} |
\label{eq:humidity_salt} |
400 |
\end{equation} |
\end{equation} |
401 |
|
|
402 |
Here: |
Here: |
471 |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
472 |
|
|
473 |
\begin{equation} |
\begin{equation} |
474 |
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
\dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
475 |
\label{eq:fixedbc} |
\label{eq:fixedbc} |
476 |
\end{equation} |
\end{equation} |
477 |
|
|
478 |
\begin{equation} |
\begin{equation} |
479 |
\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ |
\dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \ |
480 |
(oceansurface,bottomoftheatmosphere)} \label{eq:movingbc} |
(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} |
481 |
\end{equation} |
\end{equation} |
482 |
|
|
483 |
Here |
Here |
570 |
atmosphere)} \label{eq:moving-bc-atmos} |
atmosphere)} \label{eq:moving-bc-atmos} |
571 |
\end{eqnarray} |
\end{eqnarray} |
572 |
|
|
573 |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) |
574 |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
575 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
576 |
|
|
607 |
\end{eqnarray} |
\end{eqnarray} |
608 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
609 |
|
|
610 |
Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set |
Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set |
611 |
of oceanic equations |
of oceanic equations |
612 |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
613 |
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
1223 |
\label{eq:non-boussinesq} |
\label{eq:non-boussinesq} |
1224 |
\end{eqnarray} |
\end{eqnarray} |
1225 |
These equations permit acoustics modes, inertia-gravity waves, |
These equations permit acoustics modes, inertia-gravity waves, |
1226 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline |
1227 |
mode. As written, they cannot be integrated forward consistently - if we |
mode. As written, they cannot be integrated forward consistently - if we |
1228 |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
1229 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |