/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Thu Oct 25 12:06:56 2001 UTC revision 1.8 by cnh, Thu Oct 25 15:24:01 2001 UTC
# Line 326  see figure \ref{fig:zandp-vert-coord}. Line 326  see figure \ref{fig:zandp-vert-coord}.
326  \begin{equation*}  \begin{equation*}
327  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
328  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
329  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
330  \end{equation*}  \end{equation*}
331    
332  \begin{equation*}  \begin{equation}
333  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
334  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
335  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
336  \end{equation*}  \end{equation}
337    
338  \begin{equation}  \begin{equation}
339  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
340  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
341  \end{equation}  \end{equation}
342    
343  \begin{equation*}  \begin{equation}
344  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
345  \end{equation*}  \end{equation}
346    
347  \begin{equation*}  \begin{equation}
348  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
349  \end{equation*}  \label{eq:potential_temperature}
350    \end{equation}
351    
352  \begin{equation*}  \begin{equation}
353  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
354  \end{equation*}  \label{eq:humidtity_salt}
355    \end{equation}
356    
357  Here:  Here:
358    
# Line 523  The boundary conditions at top and botto Line 525  The boundary conditions at top and botto
525  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
526  \end{eqnarray}  \end{eqnarray}
527    
528  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty})
529  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
530  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
531    
532  \subsection{Ocean}  \subsection{Ocean}
# Line 560  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 562  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
562  \end{eqnarray}  \end{eqnarray}
563  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
564    
565  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set
566    of oceanic equations
567  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
568  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
569    
# Line 573  Let us separate $\phi $ in to surface, h Line 576  Let us separate $\phi $ in to surface, h
576  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
577  \label{eq:phi-split}  \label{eq:phi-split}
578  \end{equation}  \end{equation}
579  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
580    
581  \begin{equation}  \begin{equation}
582  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 666  In the above `${r}$' is the distance fro Line 669  In the above `${r}$' is the distance fro
669    
670  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
671  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
672    
673  %%CNHbegin  %%CNHbegin
674  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 730  In the non-hydrostatic ocean model all t Line 731  In the non-hydrostatic ocean model all t
731  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
732  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
733  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
734  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
735  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
736  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
737  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 779  coordinates are supported - see eqs(\ref Line 780  coordinates are supported - see eqs(\ref
780  \subsection{Solution strategy}  \subsection{Solution strategy}
781    
782  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
783  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
784  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
785  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
786  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
787  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 838  atmospheric pressure pushing down on the Line 838  atmospheric pressure pushing down on the
838    
839  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
840    
841  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
842  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
843    
844  \begin{equation*}  \begin{equation*}
845  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 864  r $. The above can be rearranged to yiel Line 864  r $. The above can be rearranged to yiel
864  where we have incorporated a source term.  where we have incorporated a source term.
865    
866  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
867  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
868  be written  be written
869  \begin{equation}  \begin{equation}
870  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 872  be written Line 872  be written
872  \end{equation}  \end{equation}
873  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
874    
875  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
876  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
877  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
878  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
879    
880  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
881    
882  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
883  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
884  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
885    
886  \begin{equation}  \begin{equation}
887  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 911  tangential component of velocity, $v_{T} Line 911  tangential component of velocity, $v_{T}
911  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
912  equations - see below.  equations - see below.
913    
914  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
915    
916  \begin{equation}  \begin{equation}
917  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 951  If the flow is `close' to hydrostatic ba Line 951  If the flow is `close' to hydrostatic ba
951  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
952  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
953    
954  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
955  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
956    
957  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 959  does not vanish at $r=R_{moving}$, and s Line 959  does not vanish at $r=R_{moving}$, and s
959  \subsubsection{Forcing}  \subsubsection{Forcing}
960    
961  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
962  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
963    
964  \subsubsection{Dissipation}  \subsubsection{Dissipation}
965    
# Line 1007  salinity ... ). Line 1007  salinity ... ).
1007  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1008    
1009  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in eq(\ref
1010  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1011    
1012  \begin{equation}  \begin{equation}
1013  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1025  to discretize the model. Line 1025  to discretize the model.
1025    
1026  \subsection{Adjoint}  \subsection{Adjoint}
1027    
1028  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1029  in Chapter 5.  in Chapter 5.
1030    
1031  % $Header$  % $Header$
# Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined:
1147  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1148  \begin{eqnarray}  \begin{eqnarray}
1149  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1150  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1151  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1152  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1153  \partial p} &=&0 \\  \partial p} &=&0 \\
1154  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1155  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1156  \end{eqnarray}  \end{eqnarray}
1157    
1158  % $Header$  % $Header$
# Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1171  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1172  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1173  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1174  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1175  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1176  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1177  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1178    \label{eq:non-boussinesq}
1179  \end{eqnarray}  \end{eqnarray}
1180  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1181  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
# Line 1193  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1194  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1194  \end{equation}  \end{equation}
1195    
1196  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1197  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1198  \begin{equation}  \begin{equation}
1199  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1200  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22