326 |
\begin{equation*} |
\begin{equation*} |
327 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
328 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
329 |
\text{ horizontal mtm} |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
330 |
\end{equation*} |
\end{equation*} |
331 |
|
|
332 |
\begin{equation*} |
\begin{equation} |
333 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
334 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
335 |
vertical mtm} |
vertical mtm} \label{eq:vertical_mtm} |
336 |
\end{equation*} |
\end{equation} |
337 |
|
|
338 |
\begin{equation} |
\begin{equation} |
339 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
340 |
\partial r}=0\text{ continuity} \label{eq:continuous} |
\partial r}=0\text{ continuity} \label{eq:continuity} |
341 |
\end{equation} |
\end{equation} |
342 |
|
|
343 |
\begin{equation*} |
\begin{equation} |
344 |
b=b(\theta ,S,r)\text{ equation of state} |
b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state} |
345 |
\end{equation*} |
\end{equation} |
346 |
|
|
347 |
\begin{equation*} |
\begin{equation} |
348 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
349 |
\end{equation*} |
\label{eq:potential_temperature} |
350 |
|
\end{equation} |
351 |
|
|
352 |
\begin{equation*} |
\begin{equation} |
353 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
354 |
\end{equation*} |
\label{eq:humidtity_salt} |
355 |
|
\end{equation} |
356 |
|
|
357 |
Here: |
Here: |
358 |
|
|
525 |
atmosphere)} \label{eq:moving-bc-atmos} |
atmosphere)} \label{eq:moving-bc-atmos} |
526 |
\end{eqnarray} |
\end{eqnarray} |
527 |
|
|
528 |
Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) |
529 |
set of atmospheric equations which, for convenience, are written out in $p$ |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
530 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
531 |
|
|
532 |
\subsection{Ocean} |
\subsection{Ocean} |
562 |
\end{eqnarray} |
\end{eqnarray} |
563 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
564 |
|
|
565 |
Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations |
Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_slainty}) yield a consistent set |
566 |
|
of oceanic equations |
567 |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
568 |
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
569 |
|
|
576 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
577 |
\label{eq:phi-split} |
\label{eq:phi-split} |
578 |
\end{equation} |
\end{equation} |
579 |
and write eq(\ref{incompressible}a,b) in the form: |
and write eq(\ref{eq:incompressible}) in the form: |
580 |
|
|
581 |
\begin{equation} |
\begin{equation} |
582 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
669 |
|
|
670 |
Grad and div operators in spherical coordinates are defined in appendix |
Grad and div operators in spherical coordinates are defined in appendix |
671 |
OPERATORS. |
OPERATORS. |
|
\marginpar{ |
|
|
Fig.6 Spherical polar coordinate system.} |
|
672 |
|
|
673 |
%%CNHbegin |
%%CNHbegin |
674 |
\input{part1/sphere_coord_figure.tex} |
\input{part1/sphere_coord_figure.tex} |
731 |
three dimensional elliptic equation must be solved subject to Neumann |
three dimensional elliptic equation must be solved subject to Neumann |
732 |
boundary conditions (see below). It is important to note that use of the |
boundary conditions (see below). It is important to note that use of the |
733 |
full \textbf{NH} does not admit any new `fast' waves in to the system - the |
full \textbf{NH} does not admit any new `fast' waves in to the system - the |
734 |
incompressible condition eq(\ref{eq:continuous})c has already filtered out |
incompressible condition eq(\ref{eq:continuity}) has already filtered out |
735 |
acoustic modes. It does, however, ensure that the gravity waves are treated |
acoustic modes. It does, however, ensure that the gravity waves are treated |
736 |
accurately with an exact dispersion relation. The \textbf{NH} set has a |
accurately with an exact dispersion relation. The \textbf{NH} set has a |
737 |
complete angular momentum principle and consistent energetics - see White |
complete angular momentum principle and consistent energetics - see White |
780 |
\subsection{Solution strategy} |
\subsection{Solution strategy} |
781 |
|
|
782 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
783 |
NH} models is summarized in Fig.7. |
NH} models is summarized in Figure \ref{fig:solution-strategy}. |
784 |
\marginpar{ |
Under all dynamics, a 2-d elliptic equation is |
|
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
|
785 |
first solved to find the surface pressure and the hydrostatic pressure at |
first solved to find the surface pressure and the hydrostatic pressure at |
786 |
any level computed from the weight of fluid above. Under \textbf{HPE} and |
any level computed from the weight of fluid above. Under \textbf{HPE} and |
787 |
\textbf{QH} dynamics, the horizontal momentum equations are then stepped |
\textbf{QH} dynamics, the horizontal momentum equations are then stepped |
838 |
|
|
839 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
840 |
|
|
841 |
The surface pressure equation can be obtained by integrating continuity, ( |
The surface pressure equation can be obtained by integrating continuity, |
842 |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
(\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
843 |
|
|
844 |
\begin{equation*} |
\begin{equation*} |
845 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
864 |
where we have incorporated a source term. |
where we have incorporated a source term. |
865 |
|
|
866 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
867 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can |
868 |
be written |
be written |
869 |
\begin{equation} |
\begin{equation} |
870 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
872 |
\end{equation} |
\end{equation} |
873 |
where $b_{s}$ is the buoyancy at the surface. |
where $b_{s}$ is the buoyancy at the surface. |
874 |
|
|
875 |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref |
In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref |
876 |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
877 |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
878 |
surface' and `rigid lid' approaches are available. |
surface' and `rigid lid' approaches are available. |
879 |
|
|
880 |
\subsubsection{Non-hydrostatic pressure} |
\subsubsection{Non-hydrostatic pressure} |
881 |
|
|
882 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
Taking the horizontal divergence of (\ref{eq:mom-h}) and adding |
883 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
$\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation |
884 |
(\ref{incompressible}), we deduce that: |
(\ref{eq:continuity}), we deduce that: |
885 |
|
|
886 |
\begin{equation} |
\begin{equation} |
887 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
911 |
depending on the form chosen for the dissipative terms in the momentum |
depending on the form chosen for the dissipative terms in the momentum |
912 |
equations - see below. |
equations - see below. |
913 |
|
|
914 |
Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: |
Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that: |
915 |
|
|
916 |
\begin{equation} |
\begin{equation} |
917 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
951 |
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
952 |
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
953 |
|
|
954 |
The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman}) |
The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh}) |
955 |
does not vanish at $r=R_{moving}$, and so refines the pressure there. |
does not vanish at $r=R_{moving}$, and so refines the pressure there. |
956 |
|
|
957 |
\subsection{Forcing/dissipation} |
\subsection{Forcing/dissipation} |
959 |
\subsubsection{Forcing} |
\subsubsection{Forcing} |
960 |
|
|
961 |
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
962 |
`physics packages' described in detail in chapter ??. |
`physics packages' and forcing packages. These are described later on. |
963 |
|
|
964 |
\subsubsection{Dissipation} |
\subsubsection{Dissipation} |
965 |
|
|
1007 |
\subsection{Vector invariant form} |
\subsection{Vector invariant form} |
1008 |
|
|
1009 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
For some purposes it is advantageous to write momentum advection in eq(\ref |
1010 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: |
1011 |
|
|
1012 |
\begin{equation} |
\begin{equation} |
1013 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
1025 |
|
|
1026 |
\subsection{Adjoint} |
\subsection{Adjoint} |
1027 |
|
|
1028 |
Tangent linear and adjoint counterparts of the forward model and described |
Tangent linear and adjoint counterparts of the forward model are described |
1029 |
in Chapter 5. |
in Chapter 5. |
1030 |
|
|
1031 |
% $Header$ |
% $Header$ |
1147 |
The final form of the HPE's in p coordinates is then: |
The final form of the HPE's in p coordinates is then: |
1148 |
\begin{eqnarray} |
\begin{eqnarray} |
1149 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1150 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ |
1151 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
1152 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
1153 |
\partial p} &=&0 \\ |
\partial p} &=&0 \\ |
1154 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
1155 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
1156 |
\end{eqnarray} |
\end{eqnarray} |
1157 |
|
|
1158 |
% $Header$ |
% $Header$ |
1171 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
1172 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
1173 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
1174 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\ |
1175 |
\rho &=&\rho (\theta ,S,p) \\ |
\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\ |
1176 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\ |
1177 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt} |
1178 |
|
\label{eq:non-boussinesq} |
1179 |
\end{eqnarray} |
\end{eqnarray} |
1180 |
These equations permit acoustics modes, inertia-gravity waves, |
These equations permit acoustics modes, inertia-gravity waves, |
1181 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
1194 |
\end{equation} |
\end{equation} |
1195 |
|
|
1196 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
1197 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: |
|
{eq-zns-cont} gives: |
|
1198 |
\begin{equation} |
\begin{equation} |
1199 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
1200 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |