/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Thu Oct 25 12:06:56 2001 UTC revision 1.11 by cnh, Fri Nov 16 21:18:36 2001 UTC
# Line 102  of them here. A more detailed descriptio Line 102  of them here. A more detailed descriptio
102  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
103  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
104  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
105  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
106  described in detail in the documentation.  described in detail in the documentation.
107    
108  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
# Line 126  there are no mountains or land-sea contr Line 126  there are no mountains or land-sea contr
126  %% CNHend  %% CNHend
127    
128  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
129  globe permitting a uniform gridding and obviated the need to Fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
130  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
131  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
132    
# Line 163  warm water northward by the mean flow of Line 163  warm water northward by the mean flow of
163  visible.  visible.
164    
165  %% CNHbegin  %% CNHbegin
166  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
167  %% CNHend  %% CNHend
168    
169    
# Line 191  Dense plumes generated by localized cool Line 191  Dense plumes generated by localized cool
191  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
192  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
193  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
194  eddies. The simulation shown in the figure \ref{fig::convect-and-topo}  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
195  (blue is cold dense fluid, red is  (blue is cold dense fluid, red is
196  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
197  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
# Line 231  data assimilation studies. Line 231  data assimilation studies.
231    
232  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
233  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
234  of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
235  at 60$^{\circ }$N and $  at 60$^{\circ }$N and $
236  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
237  a 100 year period. We see that $J$ is  a 100 year period. We see that $J$ is
# Line 248  yields sensitivities to all other model Line 248  yields sensitivities to all other model
248  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
249  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
250  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
251  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
252  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
253  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean
254  surface elevation of the ocean obtained by bringing the model in to  surface elevation of the ocean obtained by bringing the model in to
# Line 277  telescoping to $\frac{1}{3}^{\circ}\time Line 277  telescoping to $\frac{1}{3}^{\circ}\time
277  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
278    
279  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
280  laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
281  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
282  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
283  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
# Line 326  see figure \ref{fig:zandp-vert-coord}. Line 326  see figure \ref{fig:zandp-vert-coord}.
326  \begin{equation*}  \begin{equation*}
327  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
328  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
329  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
330  \end{equation*}  \end{equation*}
331    
332  \begin{equation*}  \begin{equation}
333  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
334  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
335  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
336  \end{equation*}  \end{equation}
337    
338  \begin{equation}  \begin{equation}
339  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
340  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
341  \end{equation}  \end{equation}
342    
343  \begin{equation*}  \begin{equation}
344  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
345  \end{equation*}  \end{equation}
346    
347  \begin{equation*}  \begin{equation}
348  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
349  \end{equation*}  \label{eq:potential_temperature}
350    \end{equation}
351    
352  \begin{equation*}  \begin{equation}
353  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
354  \end{equation*}  \label{eq:humidity_salt}
355    \end{equation}
356    
357  Here:  Here:
358    
# Line 430  at fixed and moving $r$ surfaces we set Line 432  at fixed and moving $r$ surfaces we set
432    
433  \begin{equation}  \begin{equation}
434  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
435  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
436  \end{equation}  \end{equation}
437    
438  Here  Here
# Line 523  The boundary conditions at top and botto Line 525  The boundary conditions at top and botto
525  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
526  \end{eqnarray}  \end{eqnarray}
527    
528  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
529  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
530  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
531    
532  \subsection{Ocean}  \subsection{Ocean}
# Line 560  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 562  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
562  \end{eqnarray}  \end{eqnarray}
563  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
564    
565  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
566    of oceanic equations
567  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
568  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
569    
# Line 573  Let us separate $\phi $ in to surface, h Line 576  Let us separate $\phi $ in to surface, h
576  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
577  \label{eq:phi-split}  \label{eq:phi-split}
578  \end{equation}  \end{equation}
579  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
580    
581  \begin{equation}  \begin{equation}
582  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 666  In the above `${r}$' is the distance fro Line 669  In the above `${r}$' is the distance fro
669    
670  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
671  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
672    
673  %%CNHbegin  %%CNHbegin
674  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 730  In the non-hydrostatic ocean model all t Line 731  In the non-hydrostatic ocean model all t
731  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
732  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
733  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
734  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
735  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
736  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
737  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 779  coordinates are supported - see eqs(\ref Line 780  coordinates are supported - see eqs(\ref
780  \subsection{Solution strategy}  \subsection{Solution strategy}
781    
782  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
783  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
784  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
785  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
786  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
787  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 838  atmospheric pressure pushing down on the Line 838  atmospheric pressure pushing down on the
838    
839  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
840    
841  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
842  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
843    
844  \begin{equation*}  \begin{equation*}
845  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 864  r $. The above can be rearranged to yiel Line 864  r $. The above can be rearranged to yiel
864  where we have incorporated a source term.  where we have incorporated a source term.
865    
866  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
867  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
868  be written  be written
869  \begin{equation}  \begin{equation}
870  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 872  be written Line 872  be written
872  \end{equation}  \end{equation}
873  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
874    
875  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
876  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
877  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
878  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
879    
880  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
881    
882  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
883  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
884  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
885    
886  \begin{equation}  \begin{equation}
887  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 911  tangential component of velocity, $v_{T} Line 911  tangential component of velocity, $v_{T}
911  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
912  equations - see below.  equations - see below.
913    
914  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
915    
916  \begin{equation}  \begin{equation}
917  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 951  If the flow is `close' to hydrostatic ba Line 951  If the flow is `close' to hydrostatic ba
951  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
952  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
953    
954  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
955  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
956    
957  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 959  does not vanish at $r=R_{moving}$, and s Line 959  does not vanish at $r=R_{moving}$, and s
959  \subsubsection{Forcing}  \subsubsection{Forcing}
960    
961  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
962  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
963    
964  \subsubsection{Dissipation}  \subsubsection{Dissipation}
965    
# Line 1007  salinity ... ). Line 1007  salinity ... ).
1007  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1008    
1009  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in eq(\ref
1010  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1011    
1012  \begin{equation}  \begin{equation}
1013  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1025  to discretize the model. Line 1025  to discretize the model.
1025    
1026  \subsection{Adjoint}  \subsection{Adjoint}
1027    
1028  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1029  in Chapter 5.  in Chapter 5.
1030    
1031  % $Header$  % $Header$
# Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined:
1147  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1148  \begin{eqnarray}  \begin{eqnarray}
1149  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1150  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1151  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1152  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1153  \partial p} &=&0 \\  \partial p} &=&0 \\
1154  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1155  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1156  \end{eqnarray}  \end{eqnarray}
1157    
1158  % $Header$  % $Header$
# Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1171  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1172  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1173  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1174  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1175  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1176  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1177  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1178    \label{eq:non-boussinesq}
1179  \end{eqnarray}  \end{eqnarray}
1180  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1181  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1182  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1183  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1184  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
# Line 1193  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1194  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1194  \end{equation}  \end{equation}
1195    
1196  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1197  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1198  \begin{equation}  \begin{equation}
1199  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1200  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.11

  ViewVC Help
Powered by ViewVC 1.1.22