/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.4 by adcroft, Thu Oct 11 19:36:56 2001 UTC revision 1.24 by edhill, Wed Apr 5 02:27:32 2006 UTC
# Line 32  Line 32 
32  %tci%\tableofcontents  %tci%\tableofcontents
33    
34    
 \part{MIT GCM basics}  
   
35  % Section: Overview  % Section: Overview
36    
37  % $Header$  % $Header$
38  % $Name$  % $Name$
39    
40  \section{Introduction}  This document provides the reader with the information necessary to
   
 This documentation provides the reader with the information necessary to  
41  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
42  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
43  numerical algorithms the model employs and a description of the associated  numerical algorithms the model employs and a description of the associated
# Line 51  are available. A number of examples illu Line 47  are available. A number of examples illu
47  both process and general circulation studies of the atmosphere and ocean are  both process and general circulation studies of the atmosphere and ocean are
48  also presented.  also presented.
49    
50    \section{Introduction}
51    \begin{rawhtml}
52    <!-- CMIREDIR:innovations: -->
53    \end{rawhtml}
54    
55    
56  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
57    
58  \begin{itemize}  \begin{itemize}
59  \item it can be used to study both atmospheric and oceanic phenomena; one  \item it can be used to study both atmospheric and oceanic phenomena; one
60  hydrodynamical kernel is used to drive forward both atmospheric and oceanic  hydrodynamical kernel is used to drive forward both atmospheric and oceanic
61  models - see fig  models - see fig \ref{fig:onemodel}
 \marginpar{  
 Fig.1 One model}\ref{fig:onemodel}  
62    
63  %% CNHbegin  %% CNHbegin
64  \input{part1/one_model_figure}  \input{part1/one_model_figure}
65  %% CNHend  %% CNHend
66    
67  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
68  small-scale and large scale processes - see fig  small-scale and large scale processes - see fig \ref{fig:all-scales}
 \marginpar{  
 Fig.2 All scales}\ref{fig:all-scales}  
69    
70  %% CNHbegin  %% CNHbegin
71  \input{part1/all_scales_figure}  \input{part1/all_scales_figure}
# Line 75  Fig.2 All scales}\ref{fig:all-scales} Line 73  Fig.2 All scales}\ref{fig:all-scales}
73    
74  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
75  discretization and support for the treatment of irregular geometries using  discretization and support for the treatment of irregular geometries using
76  orthogonal curvilinear grids and shaved cells - see fig  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
 \marginpar{  
 Fig.3 Finite volumes}\ref{fig:finite-volumes}  
77    
78  %% CNHbegin  %% CNHbegin
79  \input{part1/fvol_figure}  \input{part1/fvol_figure}
# Line 92  computational platforms. Line 88  computational platforms.
88  \end{itemize}  \end{itemize}
89    
90  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
91  listed in an Appendix.  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}:
92    
93    \begin{verbatim}
94    Hill, C. and J. Marshall, (1995)
95    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
96    Parallel Computational Fluid Dynamics
97    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
98    and Results Using Parallel Computers, 545-552.
99    Elsevier Science B.V.: New York
100    
101    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
102    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
103    J. Geophysical Res., 102(C3), 5733-5752.
104    
105    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
106    A finite-volume, incompressible Navier Stokes model for studies of the ocean
107    on parallel computers,
108    J. Geophysical Res., 102(C3), 5753-5766.
109    
110    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
111    Representation of topography by shaved cells in a height coordinate ocean
112    model
113    Mon Wea Rev, vol 125, 2293-2315
114    
115    Marshall, J., Jones, H. and C. Hill, (1998)
116    Efficient ocean modeling using non-hydrostatic algorithms
117    Journal of Marine Systems, 18, 115-134
118    
119    Adcroft, A., Hill C. and J. Marshall: (1999)
120    A new treatment of the Coriolis terms in C-grid models at both high and low
121    resolutions,
122    Mon. Wea. Rev. Vol 127, pages 1928-1936
123    
124    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
125    A Strategy for Terascale Climate Modeling.
126    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
127    in Meteorology, pages 406-425
128    World Scientific Publishing Co: UK
129    
130    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
131    Construction of the adjoint MIT ocean general circulation model and
132    application to Atlantic heat transport variability
133    J. Geophysical Res., 104(C12), 29,529-29,547.
134    
135    \end{verbatim}
136    
137  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
138  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
 \pagebreak  
139    
140  % $Header$  % $Header$
141  % $Name$  % $Name$
142    
143  \section{Illustrations of the model in action}  \section{Illustrations of the model in action}
144    
145  The MITgcm has been designed and used to model a wide range of phenomena,  MITgcm has been designed and used to model a wide range of phenomena,
146  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
147  atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
148  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
149  of them here. A more detailed description of the underlying formulation,  of them here. A more detailed description of the underlying formulation,
150  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
151  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
152  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
153  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
154  described in detail in the documentation.  described in detail in the documentation.
155    
156  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
157    \begin{rawhtml}
158    <!-- CMIREDIR:atmospheric_example: -->
159    \end{rawhtml}
160    
161    
 A novel feature of MITgcm is its ability to simulate both atmospheric and  
 oceanographic flows at both small and large scales.  
162    
163  Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
164    both atmospheric and oceanographic flows at both small and large scales.
165    
166    Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
167  temperature field obtained using the atmospheric isomorph of MITgcm run at  temperature field obtained using the atmospheric isomorph of MITgcm run at
168  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
169  (blue) and warm air along an equatorial band (red). Fully developed  (blue) and warm air along an equatorial band (red). Fully developed
# Line 135  there are no mountains or land-sea contr Line 179  there are no mountains or land-sea contr
179  %% CNHend  %% CNHend
180    
181  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
182  globe permitting a uniform gridding and obviated the need to fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
183  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
184  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
185    
186  Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal  Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
187  wind and meridional overturning streamfunction from a 20-level version of  wind from a 20-level configuration of
188  the model. It compares favorable with more conventional spatial  the model. It compares favorable with more conventional spatial
189  discretization approaches.  discretization approaches. The two plots show the field calculated using the
190    cube-sphere grid and the flow calculated using a regular, spherical polar
191  A regular spherical lat-lon grid can also be used.  latitude-longitude grid. Both grids are supported within the model.
192    
193  %% CNHbegin  %% CNHbegin
194  \input{part1/hs_zave_u_figure}  \input{part1/hs_zave_u_figure}
195  %% CNHend  %% CNHend
196    
197  \subsection{Ocean gyres}  \subsection{Ocean gyres}
198    \begin{rawhtml}
199    <!-- CMIREDIR:oceanic_example: -->
200    \end{rawhtml}
201    \begin{rawhtml}
202    <!-- CMIREDIR:ocean_gyres: -->
203    \end{rawhtml}
204    
205  Baroclinic instability is a ubiquitous process in the ocean, as well as the  Baroclinic instability is a ubiquitous process in the ocean, as well as the
206  atmosphere. Ocean eddies play an important role in modifying the  atmosphere. Ocean eddies play an important role in modifying the
# Line 160  diffusive patterns of ocean currents. Bu Line 210  diffusive patterns of ocean currents. Bu
210  increased until the baroclinic instability process is resolved, numerical  increased until the baroclinic instability process is resolved, numerical
211  solutions of a different and much more realistic kind, can be obtained.  solutions of a different and much more realistic kind, can be obtained.
212    
213  Fig. ?.? shows the surface temperature and velocity field obtained from  Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
214  MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$  field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
215    resolution on a $lat-lon$
216  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
217  (to avoid the converging of meridian in northern latitudes). 21 vertical  (to avoid the converging of meridian in northern latitudes). 21 vertical
218  levels are used in the vertical with a `lopped cell' representation of  levels are used in the vertical with a `lopped cell' representation of
219  topography. The development and propagation of anomalously warm and cold  topography. The development and propagation of anomalously warm and cold
220  eddies can be clearly been seen in the Gulf Stream region. The transport of  eddies can be clearly seen in the Gulf Stream region. The transport of
221  warm water northward by the mean flow of the Gulf Stream is also clearly  warm water northward by the mean flow of the Gulf Stream is also clearly
222  visible.  visible.
223    
224  %% CNHbegin  %% CNHbegin
225  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
226  %% CNHend  %% CNHend
227    
228    
229  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
230    \begin{rawhtml}
231    <!-- CMIREDIR:global_ocean_circulation: -->
232    \end{rawhtml}
233    
234  Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
235    the surface of a 4$^{\circ }$
236  global ocean model run with 15 vertical levels. Lopped cells are used to  global ocean model run with 15 vertical levels. Lopped cells are used to
237  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
238  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
# Line 185  mixed boundary conditions on temperature Line 240  mixed boundary conditions on temperature
240  transfer properties of ocean eddies, convection and mixing is parameterized  transfer properties of ocean eddies, convection and mixing is parameterized
241  in this model.  in this model.
242    
243  Fig.E2b shows the meridional overturning circulation of the global ocean in  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
244  Sverdrups.  circulation of the global ocean in Sverdrups.
245    
246  %%CNHbegin  %%CNHbegin
247  \input{part1/global_circ_figure}  \input{part1/global_circ_figure}
248  %%CNHend  %%CNHend
249    
250  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
251    \begin{rawhtml}
252    <!-- CMIREDIR:mixing_over_topography: -->
253    \end{rawhtml}
254    
255    
256  Dense plumes generated by localized cooling on the continental shelf of the  Dense plumes generated by localized cooling on the continental shelf of the
257  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
258  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
259  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
260  eddies. The simulation shown in the figure (blue is cold dense fluid, red is  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
261    (blue is cold dense fluid, red is
262  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
263  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
264  slope but is deflected along the slope by rotation. It is found that  slope but is deflected along the slope by rotation. It is found that
# Line 211  instability of the along-slope current. Line 271  instability of the along-slope current.
271  %%CNHend  %%CNHend
272    
273  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
274    \begin{rawhtml}
275    <!-- CMIREDIR:boundary_forced_internal_waves: -->
276    \end{rawhtml}
277    
278  The unique ability of MITgcm to treat non-hydrostatic dynamics in the  The unique ability of MITgcm to treat non-hydrostatic dynamics in the
279  presence of complex geometry makes it an ideal tool to study internal wave  presence of complex geometry makes it an ideal tool to study internal wave
280  dynamics and mixing in oceanic canyons and ridges driven by large amplitude  dynamics and mixing in oceanic canyons and ridges driven by large amplitude
281  barotropic tidal currents imposed through open boundary conditions.  barotropic tidal currents imposed through open boundary conditions.
282    
283  Fig. ?.? shows the influence of cross-slope topographic variations on  Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
284    topographic variations on
285  internal wave breaking - the cross-slope velocity is in color, the density  internal wave breaking - the cross-slope velocity is in color, the density
286  contoured. The internal waves are excited by application of open boundary  contoured. The internal waves are excited by application of open boundary
287  conditions on the left.\ They propagate to the sloping boundary (represented  conditions on the left. They propagate to the sloping boundary (represented
288  using MITgcm's finite volume spatial discretization) where they break under  using MITgcm's finite volume spatial discretization) where they break under
289  nonhydrostatic dynamics.  nonhydrostatic dynamics.
290    
# Line 229  nonhydrostatic dynamics. Line 293  nonhydrostatic dynamics.
293  %%CNHend  %%CNHend
294    
295  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
296    \begin{rawhtml}
297    <!-- CMIREDIR:parameter_sensitivity: -->
298    \end{rawhtml}
299    
300  Forward and tangent linear counterparts of MITgcm are supported using an  Forward and tangent linear counterparts of MITgcm are supported using an
301  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
302  data assimilation studies.  data assimilation studies.
303    
304  As one example of application of the MITgcm adjoint, Fig.E4 maps the  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
305  gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
306  of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
307  \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is  at 60$^{\circ }$N and $
308    \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
309    a 100 year period. We see that $J$ is
310  sensitive to heat fluxes over the Labrador Sea, one of the important sources  sensitive to heat fluxes over the Labrador Sea, one of the important sources
311  of deep water for the thermohaline circulations. This calculation also  of deep water for the thermohaline circulations. This calculation also
312  yields sensitivities to all other model parameters.  yields sensitivities to all other model parameters.
# Line 247  yields sensitivities to all other model Line 316  yields sensitivities to all other model
316  %%CNHend  %%CNHend
317    
318  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
319    \begin{rawhtml}
320    <!-- CMIREDIR:global_state_estimation: -->
321    \end{rawhtml}
322    
323    
324  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
325  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
326  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
327  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
328  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
329  etc. Figure ?.? shows an estimate of the time-mean surface elevation of the  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
330  ocean obtained by bringing the model in to consistency with altimetric and  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
331  in-situ observations over the period 1992-1997.  Both are obtained from assimilation bringing the model in to
332    consistency with altimetric and in-situ observations over the period
333    1992-1997.
334    
335  %% CNHbegin  %% CNHbegin
336  \input{part1/globes_figure}  \input{part1/assim_figure}
337  %% CNHend  %% CNHend
338    
339  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
340    \begin{rawhtml}
341    <!-- CMIREDIR:ocean_biogeo_cycles: -->
342    \end{rawhtml}
343    
344  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the ocean. For
345  example one can study the effects of interannual changes in meteorological  example one can study the effects of interannual changes in meteorological
346  forcing and upper ocean circulation on the fluxes of carbon dioxide and  forcing and upper ocean circulation on the fluxes of carbon dioxide and
347  oxygen between the ocean and atmosphere. The figure shows the annual air-sea  oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
348  flux of oxygen and its relation to density outcrops in the southern oceans  the annual air-sea flux of oxygen and its relation to density outcrops in
349  from a single year of a global, interannually varying simulation.  the southern oceans from a single year of a global, interannually varying
350    simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
351    telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
352    
353  %%CNHbegin  %%CNHbegin
354  \input{part1/biogeo_figure}  \input{part1/biogeo_figure}
355  %%CNHend  %%CNHend
356    
357  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
358    \begin{rawhtml}
359    <!-- CMIREDIR:classroom_exp: -->
360    \end{rawhtml}
361    
362  Figure ?.? shows MITgcm being used to simulate a laboratory experiment  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
363  enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
364  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
365  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
366  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
367  unstable. The stratification and depth of penetration of the lens is  unstable. The stratification and depth of penetration of the lens is
368  arrested by its instability in a process analogous to that whic sets the  arrested by its instability in a process analogous to that which sets the
369  stratification of the ACC.  stratification of the ACC.
370    
371  %%CNHbegin  %%CNHbegin
# Line 293  stratification of the ACC. Line 376  stratification of the ACC.
376  % $Name$  % $Name$
377    
378  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
379    \begin{rawhtml}
380    <!-- CMIREDIR:z-p_isomorphism: -->
381    \end{rawhtml}
382    
383  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
384  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
385  respective fluids - see fig.4  respective fluids - see figure \ref{fig:isomorphic-equations}.
386  \marginpar{  One system of hydrodynamical equations is written down
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  
387  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
388  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
389  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
390  modeling the atmosphere and height, $z$, if we are modeling the ocean.  modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
391    and height, $z$, if we are modeling the ocean (left hand side of figure
392    \ref{fig:isomorphic-equations}).
393    
394  %%CNHbegin  %%CNHbegin
395  \input{part1/zandpcoord_figure.tex}  \input{part1/zandpcoord_figure.tex}
# Line 314  velocity $\vec{\mathbf{v}}$, active trac Line 401  velocity $\vec{\mathbf{v}}$, active trac
401  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
402  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
403  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
404  a generic vertical coordinate, $r$, see fig.5  a generic vertical coordinate, $r$, so that the appropriate
405  \marginpar{  kinematic boundary conditions can be applied isomorphically
406  Fig.5 The vertical coordinate of model}:  see figure \ref{fig:zandp-vert-coord}.
407    
408  %%CNHbegin  %%CNHbegin
409  \input{part1/vertcoord_figure.tex}  \input{part1/vertcoord_figure.tex}
410  %%CNHend  %%CNHend
411    
412  \begin{equation*}  \begin{equation}
413  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
414  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
415  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
416  \end{equation*}  \end{equation}
417    
418  \begin{equation*}  \begin{equation}
419  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
420  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
421  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
422  \end{equation*}  \end{equation}
423    
424  \begin{equation}  \begin{equation}
425  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
426  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
427  \end{equation}  \end{equation}
428    
429  \begin{equation*}  \begin{equation}
430  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
431  \end{equation*}  \end{equation}
432    
433  \begin{equation*}  \begin{equation}
434  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
435  \end{equation*}  \label{eq:potential_temperature}
436    \end{equation}
437    
438  \begin{equation*}  \begin{equation}
439  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
440  \end{equation*}  \label{eq:humidity_salt}
441    \end{equation}
442    
443  Here:  Here:
444    
# Line 413  S\text{ is specific humidity in the atmo Line 502  S\text{ is specific humidity in the atmo
502  \end{equation*}  \end{equation*}
503    
504  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
505  extensive `physics' packages for atmosphere and ocean described in Chapter 6.  `physics' and forcing packages for atmosphere and ocean. These are described
506    in later chapters.
507    
508  \subsection{Kinematic Boundary conditions}  \subsection{Kinematic Boundary conditions}
509    
510  \subsubsection{vertical}  \subsubsection{vertical}
511    
512  at fixed and moving $r$ surfaces we set (see fig.5):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
513    
514  \begin{equation}  \begin{equation}
515  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
516  \label{eq:fixedbc}  \label{eq:fixedbc}
517  \end{equation}  \end{equation}
518    
519  \begin{equation}  \begin{equation}
520  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
521  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
522  \end{equation}  \end{equation}
523    
524  Here  Here
# Line 450  where $\vec{\mathbf{n}}$ is the normal t Line 540  where $\vec{\mathbf{n}}$ is the normal t
540    
541  \subsection{Atmosphere}  \subsection{Atmosphere}
542    
543  In the atmosphere, see fig.5, we interpret:  In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
544    
545  \begin{equation}  \begin{equation}
546  r=p\text{ is the pressure}  \label{eq:atmos-r}  r=p\text{ is the pressure}  \label{eq:atmos-r}
# Line 521  The boundary conditions at top and botto Line 611  The boundary conditions at top and botto
611  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
612  \end{eqnarray}  \end{eqnarray}
613    
614  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations
615  set of atmospheric equations which, for convenience, are written out in $p$  (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
616  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  set of atmospheric equations which, for convenience, are written out
617    in $p$ coordinates in Appendix Atmosphere - see
618    eqs(\ref{eq:atmos-prime}).
619    
620  \subsection{Ocean}  \subsection{Ocean}
621    
# Line 558  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 650  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
650  \end{eqnarray}  \end{eqnarray}
651  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
652    
653  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
654    of oceanic equations
655  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
656  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
657    
658  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
659  Non-hydrostatic forms}  Non-hydrostatic forms}
660    \begin{rawhtml}
661    <!-- CMIREDIR:non_hydrostatic: -->
662    \end{rawhtml}
663    
664    
665  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
666    
# Line 571  Let us separate $\phi $ in to surface, h Line 668  Let us separate $\phi $ in to surface, h
668  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
669  \label{eq:phi-split}  \label{eq:phi-split}
670  \end{equation}  \end{equation}
671  and write eq(\ref{incompressible}a,b) in the form:  %and write eq(\ref{eq:incompressible}) in the form:
672    %                  ^- this eq is missing (jmc) ; replaced with:
673    and write eq( \ref{eq:horizontal_mtm}) in the form:
674    
675  \begin{equation}  \begin{equation}
676  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 604  discussion: Line 703  discussion:
703  \left.  \left.
704  \begin{tabular}{l}  \begin{tabular}{l}
705  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
706  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
707  \\  \\
708  $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $  $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
709  \\  \\
710  $+\mathcal{F}_{u}$  $+\mathcal{F}_{u}$
711  \end{tabular}  \end{tabular}
# Line 624  $+\mathcal{F}_{u}$ Line 723  $+\mathcal{F}_{u}$
723  \left.  \left.
724  \begin{tabular}{l}  \begin{tabular}{l}
725  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
726  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
727  $ \\  $ \\
728  $-\left\{ -2\Omega u\sin lat\right\} $ \\  $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
729  $+\mathcal{F}_{v}$  $+\mathcal{F}_{v}$
730  \end{tabular}  \end{tabular}
731  \ \right\} \left\{  \ \right\} \left\{
# Line 645  $+\mathcal{F}_{v}$ Line 744  $+\mathcal{F}_{v}$
744  \begin{tabular}{l}  \begin{tabular}{l}
745  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
746  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
747  ${+}\underline{{2\Omega u\cos lat}}$ \\  ${+}\underline{{2\Omega u\cos \varphi}}$ \\
748  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
749  \end{tabular}  \end{tabular}
750  \ \right\} \left\{  \ \right\} \left\{
# Line 659  $\underline{\underline{\mathcal{F}_{\dot Line 758  $\underline{\underline{\mathcal{F}_{\dot
758  \end{equation}  \end{equation}
759  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
760    
761  In the above `${r}$' is the distance from the center of the earth and `$lat$  In the above `${r}$' is the distance from the center of the earth and `$\varphi$
762  ' is latitude.  ' is latitude.
763    
764  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
765  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
766    
767  %%CNHbegin  %%CNHbegin
768  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 673  Fig.6 Spherical polar coordinate system. Line 770  Fig.6 Spherical polar coordinate system.
770    
771  \subsubsection{Shallow atmosphere approximation}  \subsubsection{Shallow atmosphere approximation}
772    
773  Most models are based on the `hydrostatic primitive equations' (HPE's) in  Most models are based on the `hydrostatic primitive equations' (HPE's)
774  which the vertical momentum equation is reduced to a statement of  in which the vertical momentum equation is reduced to a statement of
775  hydrostatic balance and the `traditional approximation' is made in which the  hydrostatic balance and the `traditional approximation' is made in
776  Coriolis force is treated approximately and the shallow atmosphere  which the Coriolis force is treated approximately and the shallow
777  approximation is made.\ The MITgcm need not make the `traditional  atmosphere approximation is made.  MITgcm need not make the
778  approximation'. To be able to support consistent non-hydrostatic forms the  `traditional approximation'. To be able to support consistent
779  shallow atmosphere approximation can be relaxed - when dividing through by $  non-hydrostatic forms the shallow atmosphere approximation can be
780  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,  relaxed - when dividing through by $ r $ in, for example,
781  the radius of the earth.  (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
782    the earth.
783    
784  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
785    \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
786    
787  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
788    
# Line 697  computed at all other levels by integrat Line 796  computed at all other levels by integrat
796    
797  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
798  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
799  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic  \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
800  contribution to the pressure field: only the terms underlined twice in Eqs. (  contribution to the pressure field: only the terms underlined twice in Eqs. (
801  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
802  and, simultaneously, the shallow atmosphere approximation is relaxed. In  and, simultaneously, the shallow atmosphere approximation is relaxed. In
# Line 706  variation of the radial position of a pa Line 805  variation of the radial position of a pa
805  vertical momentum equation (\ref{eq:mom-w}) becomes:  vertical momentum equation (\ref{eq:mom-w}) becomes:
806    
807  \begin{equation*}  \begin{equation*}
808  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
809  \end{equation*}  \end{equation*}
810  making a small correction to the hydrostatic pressure.  making a small correction to the hydrostatic pressure.
811    
# Line 717  et.al., 1997a. As in \textbf{HPE }only a Line 816  et.al., 1997a. As in \textbf{HPE }only a
816    
817  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
818    
819  The MIT model presently supports a full non-hydrostatic ocean isomorph, but  MITgcm presently supports a full non-hydrostatic ocean isomorph, but
820  only a quasi-non-hydrostatic atmospheric isomorph.  only a quasi-non-hydrostatic atmospheric isomorph.
821    
822  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
# Line 727  In the non-hydrostatic ocean model all t Line 826  In the non-hydrostatic ocean model all t
826  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
827  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
828  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
829  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
830  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
831  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
832  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 776  coordinates are supported - see eqs(\ref Line 875  coordinates are supported - see eqs(\ref
875  \subsection{Solution strategy}  \subsection{Solution strategy}
876    
877  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
878  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
879  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
880  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
881  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
882  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 792  stepping forward the vertical momentum e Line 890  stepping forward the vertical momentum e
890  %%CNHend  %%CNHend
891    
892  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
893  course, some complication that goes with the inclusion of $\cos \phi \ $  course, some complication that goes with the inclusion of $\cos \varphi \ $
894  Coriolis terms and the relaxation of the shallow atmosphere approximation.  Coriolis terms and the relaxation of the shallow atmosphere approximation.
895  But this leads to negligible increase in computation. In \textbf{NH}, in  But this leads to negligible increase in computation. In \textbf{NH}, in
896  contrast, one additional elliptic equation - a three-dimensional one - must  contrast, one additional elliptic equation - a three-dimensional one - must
# Line 802  Marshall et al, 1997) resulting in a non Line 900  Marshall et al, 1997) resulting in a non
900  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
901    
902  \subsection{Finding the pressure field}  \subsection{Finding the pressure field}
903    \label{sec:finding_the_pressure_field}
904    
905  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
906  pressure field must be obtained diagnostically. We proceed, as before, by  pressure field must be obtained diagnostically. We proceed, as before, by
# Line 834  atmospheric pressure pushing down on the Line 933  atmospheric pressure pushing down on the
933    
934  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
935    
936  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
937  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
938    
939  \begin{equation*}  \begin{equation*}
940  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 860  r $. The above can be rearranged to yiel Line 959  r $. The above can be rearranged to yiel
959  where we have incorporated a source term.  where we have incorporated a source term.
960    
961  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
962  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
963  be written  be written
964  \begin{equation}  \begin{equation}
965  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 868  be written Line 967  be written
967  \end{equation}  \end{equation}
968  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
969    
970  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
971  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
972  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
973  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
974    
975  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
976    
977  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
978  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
979  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
980    
981  \begin{equation}  \begin{equation}
982  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 907  tangential component of velocity, $v_{T} Line 1006  tangential component of velocity, $v_{T}
1006  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
1007  equations - see below.  equations - see below.
1008    
1009  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1010    
1011  \begin{equation}  \begin{equation}
1012  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 947  If the flow is `close' to hydrostatic ba Line 1046  If the flow is `close' to hydrostatic ba
1046  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
1047  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1048    
1049  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1050  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1051    
1052  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 955  does not vanish at $r=R_{moving}$, and s Line 1054  does not vanish at $r=R_{moving}$, and s
1054  \subsubsection{Forcing}  \subsubsection{Forcing}
1055    
1056  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1057  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1058    
1059  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1060    
# Line 1002  salinity ... ). Line 1101  salinity ... ).
1101    
1102  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1103    
1104  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in
1105  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
1106    (so-called) `vector invariant' form:
1107    
1108  \begin{equation}  \begin{equation}
1109  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1021  to discretize the model. Line 1121  to discretize the model.
1121    
1122  \subsection{Adjoint}  \subsection{Adjoint}
1123    
1124  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1125  in Chapter 5.  in Chapter 5.
1126    
1127  % $Header$  % $Header$
# Line 1048  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} Line 1148  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt}
1148  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1149  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1150  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1151  derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is  derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1152  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1153  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1154  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
# Line 1114  In $p$-coordinates, the upper boundary a Line 1214  In $p$-coordinates, the upper boundary a
1214  surface ($\phi $ is imposed and $\omega \neq 0$).  surface ($\phi $ is imposed and $\omega \neq 0$).
1215    
1216  \subsubsection{Splitting the geo-potential}  \subsubsection{Splitting the geo-potential}
1217    \label{sec:hpe-p-geo-potential-split}
1218    
1219  For the purposes of initialization and reducing round-off errors, the model  For the purposes of initialization and reducing round-off errors, the model
1220  deals with perturbations from reference (or ``standard'') profiles. For  deals with perturbations from reference (or ``standard'') profiles. For
# Line 1143  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1244  _{o}(p_{o})=g~Z_{topo}$, defined:
1244  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1245  \begin{eqnarray}  \begin{eqnarray}
1246  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1247  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
1248    \label{eq:atmos-prime} \\
1249  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1250  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1251  \partial p} &=&0 \\  \partial p} &=&0 \\
1252  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1253  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1254  \end{eqnarray}  \end{eqnarray}
1255    
1256  % $Header$  % $Header$
# Line 1167  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1269  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1269  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1270  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1271  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1272  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1273  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1274  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1275  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1276    \label{eq:non-boussinesq}
1277  \end{eqnarray}  \end{eqnarray}
1278  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1279  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1280  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1281  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1282  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
# Line 1188  _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\ Line 1291  _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\
1291  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexpansion}  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexpansion}
1292  \end{equation}  \end{equation}
1293    
1294  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
1295  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
1296  {eq-zns-cont} gives:  \ref{eq-zns-cont} gives:
1297  \begin{equation}  \begin{equation}
1298  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1299  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}
# Line 1380  In spherical coordinates, the velocity c Line 1483  In spherical coordinates, the velocity c
1483  and vertical direction respectively, are given by (see Fig.2) :  and vertical direction respectively, are given by (see Fig.2) :
1484    
1485  \begin{equation*}  \begin{equation*}
1486  u=r\cos \phi \frac{D\lambda }{Dt}  u=r\cos \varphi \frac{D\lambda }{Dt}
1487  \end{equation*}  \end{equation*}
1488    
1489  \begin{equation*}  \begin{equation*}
1490  v=r\frac{D\phi }{Dt}\qquad  v=r\frac{D\varphi }{Dt}\qquad
1491  \end{equation*}  \end{equation*}
1492  $\qquad \qquad \qquad \qquad $  $\qquad \qquad \qquad \qquad $
1493    
# Line 1392  $\qquad \qquad \qquad \qquad $ Line 1495  $\qquad \qquad \qquad \qquad $
1495  \dot{r}=\frac{Dr}{Dt}  \dot{r}=\frac{Dr}{Dt}
1496  \end{equation*}  \end{equation*}
1497    
1498  Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial  Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1499  distance of the particle from the center of the earth, $\Omega $ is the  distance of the particle from the center of the earth, $\Omega $ is the
1500  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1501    
# Line 1400  The `grad' ($\nabla $) and `div' ($\nabl Line 1503  The `grad' ($\nabla $) and `div' ($\nabl
1503  spherical coordinates:  spherical coordinates:
1504    
1505  \begin{equation*}  \begin{equation*}
1506  \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }  \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1507  ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}  ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1508  \right)  \right)
1509  \end{equation*}  \end{equation*}
1510    
1511  \begin{equation*}  \begin{equation*}
1512  \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial  \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1513  \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1514  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1515  \end{equation*}  \end{equation*}
1516    

Legend:
Removed from v.1.4  
changed lines
  Added in v.1.24

  ViewVC Help
Powered by ViewVC 1.1.22