61 |
models - see fig \ref{fig:onemodel} |
models - see fig \ref{fig:onemodel} |
62 |
|
|
63 |
%% CNHbegin |
%% CNHbegin |
64 |
\input{part1/one_model_figure} |
\input{s_overview/text/one_model_figure} |
65 |
%% CNHend |
%% CNHend |
66 |
|
|
67 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
68 |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
69 |
|
|
70 |
%% CNHbegin |
%% CNHbegin |
71 |
\input{part1/all_scales_figure} |
\input{s_overview/text/all_scales_figure} |
72 |
%% CNHend |
%% CNHend |
73 |
|
|
74 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
76 |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
77 |
|
|
78 |
%% CNHbegin |
%% CNHbegin |
79 |
\input{part1/fvol_figure} |
\input{s_overview/text/fvol_figure} |
80 |
%% CNHend |
%% CNHend |
81 |
|
|
82 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
87 |
computational platforms. |
computational platforms. |
88 |
\end{itemize} |
\end{itemize} |
89 |
|
|
90 |
|
|
91 |
Key publications reporting on and charting the development of the model are |
Key publications reporting on and charting the development of the model are |
92 |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}: |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04} |
93 |
|
(an overview on the model formulation can also be found in \cite{adcroft:04c}): |
94 |
|
|
95 |
\begin{verbatim} |
\begin{verbatim} |
96 |
Hill, C. and J. Marshall, (1995) |
Hill, C. and J. Marshall, (1995) |
177 |
there are no mountains or land-sea contrast. |
there are no mountains or land-sea contrast. |
178 |
|
|
179 |
%% CNHbegin |
%% CNHbegin |
180 |
\input{part1/cubic_eddies_figure} |
\input{s_overview/text/cubic_eddies_figure} |
181 |
%% CNHend |
%% CNHend |
182 |
|
|
183 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
193 |
latitude-longitude grid. Both grids are supported within the model. |
latitude-longitude grid. Both grids are supported within the model. |
194 |
|
|
195 |
%% CNHbegin |
%% CNHbegin |
196 |
\input{part1/hs_zave_u_figure} |
\input{s_overview/text/hs_zave_u_figure} |
197 |
%% CNHend |
%% CNHend |
198 |
|
|
199 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
224 |
is also clearly visible. |
is also clearly visible. |
225 |
|
|
226 |
%% CNHbegin |
%% CNHbegin |
227 |
\input{part1/atl6_figure} |
\input{s_overview/text/atl6_figure} |
228 |
%% CNHend |
%% CNHend |
229 |
|
|
230 |
|
|
246 |
circulation of the global ocean in Sverdrups. |
circulation of the global ocean in Sverdrups. |
247 |
|
|
248 |
%%CNHbegin |
%%CNHbegin |
249 |
\input{part1/global_circ_figure} |
\input{s_overview/text/global_circ_figure} |
250 |
%%CNHend |
%%CNHend |
251 |
|
|
252 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
269 |
instability of the along-slope current. |
instability of the along-slope current. |
270 |
|
|
271 |
%%CNHbegin |
%%CNHbegin |
272 |
\input{part1/convect_and_topo} |
\input{s_overview/text/convect_and_topo} |
273 |
%%CNHend |
%%CNHend |
274 |
|
|
275 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
291 |
nonhydrostatic dynamics. |
nonhydrostatic dynamics. |
292 |
|
|
293 |
%%CNHbegin |
%%CNHbegin |
294 |
\input{part1/boundary_forced_waves} |
\input{s_overview/text/boundary_forced_waves} |
295 |
%%CNHend |
%%CNHend |
296 |
|
|
297 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
314 |
yields sensitivities to all other model parameters. |
yields sensitivities to all other model parameters. |
315 |
|
|
316 |
%%CNHbegin |
%%CNHbegin |
317 |
\input{part1/adj_hf_ocean_figure} |
\input{s_overview/text/adj_hf_ocean_figure} |
318 |
%%CNHend |
%%CNHend |
319 |
|
|
320 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
335 |
1992-1997. |
1992-1997. |
336 |
|
|
337 |
%% CNHbegin |
%% CNHbegin |
338 |
\input{part1/assim_figure} |
\input{s_overview/text/assim_figure} |
339 |
%% CNHend |
%% CNHend |
340 |
|
|
341 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
355 |
shown). |
shown). |
356 |
|
|
357 |
%%CNHbegin |
%%CNHbegin |
358 |
\input{part1/biogeo_figure} |
\input{s_overview/text/biogeo_figure} |
359 |
%%CNHend |
%%CNHend |
360 |
|
|
361 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
373 |
stratification of the ACC. |
stratification of the ACC. |
374 |
|
|
375 |
%%CNHbegin |
%%CNHbegin |
376 |
\input{part1/lab_figure} |
\input{s_overview/text/lab_figure} |
377 |
%%CNHend |
%%CNHend |
378 |
|
|
379 |
% $Header$ |
% $Header$ |
396 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
397 |
|
|
398 |
%%CNHbegin |
%%CNHbegin |
399 |
\input{part1/zandpcoord_figure.tex} |
\input{s_overview/text/zandpcoord_figure.tex} |
400 |
%%CNHend |
%%CNHend |
401 |
|
|
402 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
410 |
see figure \ref{fig:zandp-vert-coord}. |
see figure \ref{fig:zandp-vert-coord}. |
411 |
|
|
412 |
%%CNHbegin |
%%CNHbegin |
413 |
\input{part1/vertcoord_figure.tex} |
\input{s_overview/text/vertcoord_figure.tex} |
414 |
%%CNHend |
%%CNHend |
415 |
|
|
416 |
\begin{equation} |
\begin{equation} |
661 |
|
|
662 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
663 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
664 |
|
\label{sec:all_hydrostatic_forms} |
665 |
\begin{rawhtml} |
\begin{rawhtml} |
666 |
<!-- CMIREDIR:non_hydrostatic: --> |
<!-- CMIREDIR:non_hydrostatic: --> |
667 |
\end{rawhtml} |
\end{rawhtml} |
770 |
OPERATORS. |
OPERATORS. |
771 |
|
|
772 |
%%CNHbegin |
%%CNHbegin |
773 |
\input{part1/sphere_coord_figure.tex} |
\input{s_overview/text/sphere_coord_figure.tex} |
774 |
%%CNHend |
%%CNHend |
775 |
|
|
776 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
891 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
892 |
|
|
893 |
%%CNHbegin |
%%CNHbegin |
894 |
\input{part1/solution_strategy_figure.tex} |
\input{s_overview/text/solution_strategy_figure.tex} |
895 |
%%CNHend |
%%CNHend |
896 |
|
|
897 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |