/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by cnh, Wed Oct 24 15:21:27 2001 UTC revision 1.25 by edhill, Sat Apr 8 01:50:49 2006 UTC
# Line 37  Line 37 
37  % $Header$  % $Header$
38  % $Name$  % $Name$
39    
40  \section{Introduction}  This document provides the reader with the information necessary to
   
 This documentation provides the reader with the information necessary to  
41  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
42  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
43  numerical algorithms the model employs and a description of the associated  numerical algorithms the model employs and a description of the associated
# Line 49  are available. A number of examples illu Line 47  are available. A number of examples illu
47  both process and general circulation studies of the atmosphere and ocean are  both process and general circulation studies of the atmosphere and ocean are
48  also presented.  also presented.
49    
50    \section{Introduction}
51    \begin{rawhtml}
52    <!-- CMIREDIR:innovations: -->
53    \end{rawhtml}
54    
55    
56  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
57    
58  \begin{itemize}  \begin{itemize}
59  \item it can be used to study both atmospheric and oceanic phenomena; one  \item it can be used to study both atmospheric and oceanic phenomena; one
60  hydrodynamical kernel is used to drive forward both atmospheric and oceanic  hydrodynamical kernel is used to drive forward both atmospheric and oceanic
61  models - see fig  models - see fig \ref{fig:onemodel}
 \marginpar{  
 Fig.1 One model}\ref{fig:onemodel}  
62    
63  %% CNHbegin  %% CNHbegin
64  \input{part1/one_model_figure}  \input{part1/one_model_figure}
65  %% CNHend  %% CNHend
66    
67  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
68  small-scale and large scale processes - see fig  small-scale and large scale processes - see fig \ref{fig:all-scales}
 \marginpar{  
 Fig.2 All scales}\ref{fig:all-scales}  
69    
70  %% CNHbegin  %% CNHbegin
71  \input{part1/all_scales_figure}  \input{part1/all_scales_figure}
# Line 73  Fig.2 All scales}\ref{fig:all-scales} Line 73  Fig.2 All scales}\ref{fig:all-scales}
73    
74  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
75  discretization and support for the treatment of irregular geometries using  discretization and support for the treatment of irregular geometries using
76  orthogonal curvilinear grids and shaved cells - see fig  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
 \marginpar{  
 Fig.3 Finite volumes}\ref{fig:finite-volumes}  
77    
78  %% CNHbegin  %% CNHbegin
79  \input{part1/fvol_figure}  \input{part1/fvol_figure}
# Line 90  computational platforms. Line 88  computational platforms.
88  \end{itemize}  \end{itemize}
89    
90  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
91  listed in an Appendix.  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}:
92    
93    \begin{verbatim}
94    Hill, C. and J. Marshall, (1995)
95    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
96    Parallel Computational Fluid Dynamics
97    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
98    and Results Using Parallel Computers, 545-552.
99    Elsevier Science B.V.: New York
100    
101    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
102    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
103    J. Geophysical Res., 102(C3), 5733-5752.
104    
105    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
106    A finite-volume, incompressible Navier Stokes model for studies of the ocean
107    on parallel computers,
108    J. Geophysical Res., 102(C3), 5753-5766.
109    
110    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
111    Representation of topography by shaved cells in a height coordinate ocean
112    model
113    Mon Wea Rev, vol 125, 2293-2315
114    
115    Marshall, J., Jones, H. and C. Hill, (1998)
116    Efficient ocean modeling using non-hydrostatic algorithms
117    Journal of Marine Systems, 18, 115-134
118    
119    Adcroft, A., Hill C. and J. Marshall: (1999)
120    A new treatment of the Coriolis terms in C-grid models at both high and low
121    resolutions,
122    Mon. Wea. Rev. Vol 127, pages 1928-1936
123    
124    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
125    A Strategy for Terascale Climate Modeling.
126    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
127    in Meteorology, pages 406-425
128    World Scientific Publishing Co: UK
129    
130    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
131    Construction of the adjoint MIT ocean general circulation model and
132    application to Atlantic heat transport variability
133    J. Geophysical Res., 104(C12), 29,529-29,547.
134    
135    \end{verbatim}
136    
137  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
138  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
# Line 100  give a feel for the wide range of proble Line 142  give a feel for the wide range of proble
142    
143  \section{Illustrations of the model in action}  \section{Illustrations of the model in action}
144    
145  The MITgcm has been designed and used to model a wide range of phenomena,  MITgcm has been designed and used to model a wide range of phenomena,
146  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
147  atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
148  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
149  of them here. A more detailed description of the underlying formulation,  of them here. A more detailed description of the underlying formulation,
150  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
151  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
152  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
153  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
154  described in detail in the documentation.  described in detail in the documentation.
155    
156  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
157    \begin{rawhtml}
158    <!-- CMIREDIR:atmospheric_example: -->
159    \end{rawhtml}
160    
161    
162    
163  A novel feature of MITgcm is its ability to simulate both atmospheric and  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
164  oceanographic flows at both small and large scales.  both atmospheric and oceanographic flows at both small and large scales.
165    
166  Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$  Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
167  temperature field obtained using the atmospheric isomorph of MITgcm run at  temperature field obtained using the atmospheric isomorph of MITgcm run at
168  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole  $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
169  (blue) and warm air along an equatorial band (red). Fully developed  (blue) and warm air along an equatorial band (red). Fully developed
170  baroclinic eddies spawned in the northern hemisphere storm track are  baroclinic eddies spawned in the northern hemisphere storm track are
171  evident. There are no mountains or land-sea contrast in this calculation,  evident. There are no mountains or land-sea contrast in this calculation,
# Line 132  there are no mountains or land-sea contr Line 179  there are no mountains or land-sea contr
179  %% CNHend  %% CNHend
180    
181  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
182  globe permitting a uniform gridding and obviated the need to fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
183  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
184  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
185    
186  Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal  Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
187  wind and meridional overturning streamfunction from a 20-level version of  wind from a 20-level configuration of
188  the model. It compares favorable with more conventional spatial  the model. It compares favorable with more conventional spatial
189  discretization approaches.  discretization approaches. The two plots show the field calculated using the
190    cube-sphere grid and the flow calculated using a regular, spherical polar
191  A regular spherical lat-lon grid can also be used.  latitude-longitude grid. Both grids are supported within the model.
192    
193  %% CNHbegin  %% CNHbegin
194  \input{part1/hs_zave_u_figure}  \input{part1/hs_zave_u_figure}
195  %% CNHend  %% CNHend
196    
197  \subsection{Ocean gyres}  \subsection{Ocean gyres}
198    \begin{rawhtml}
199    <!-- CMIREDIR:oceanic_example: -->
200    \end{rawhtml}
201    \begin{rawhtml}
202    <!-- CMIREDIR:ocean_gyres: -->
203    \end{rawhtml}
204    
205  Baroclinic instability is a ubiquitous process in the ocean, as well as the  Baroclinic instability is a ubiquitous process in the ocean, as well as the
206  atmosphere. Ocean eddies play an important role in modifying the  atmosphere. Ocean eddies play an important role in modifying the
# Line 157  diffusive patterns of ocean currents. Bu Line 210  diffusive patterns of ocean currents. Bu
210  increased until the baroclinic instability process is resolved, numerical  increased until the baroclinic instability process is resolved, numerical
211  solutions of a different and much more realistic kind, can be obtained.  solutions of a different and much more realistic kind, can be obtained.
212    
213  Fig. ?.? shows the surface temperature and velocity field obtained from  Figure \ref{fig:ocean-gyres} shows the surface temperature and
214  MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$  velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$
215  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator  horizontal resolution on a \textit{lat-lon} grid in which the pole has
216  (to avoid the converging of meridian in northern latitudes). 21 vertical  been rotated by $90^{\circ }$ on to the equator (to avoid the
217  levels are used in the vertical with a `lopped cell' representation of  converging of meridian in northern latitudes). 21 vertical levels are
218  topography. The development and propagation of anomalously warm and cold  used in the vertical with a `lopped cell' representation of
219  eddies can be clearly been seen in the Gulf Stream region. The transport of  topography. The development and propagation of anomalously warm and
220  warm water northward by the mean flow of the Gulf Stream is also clearly  cold eddies can be clearly seen in the Gulf Stream region. The
221  visible.  transport of warm water northward by the mean flow of the Gulf Stream
222    is also clearly visible.
223    
224  %% CNHbegin  %% CNHbegin
225  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
226  %% CNHend  %% CNHend
227    
228    
229  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
230    \begin{rawhtml}
231    <!-- CMIREDIR:global_ocean_circulation: -->
232    \end{rawhtml}
233    
234    Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean
235    currents at the surface of a $4^{\circ }$ global ocean model run with
236    15 vertical levels. Lopped cells are used to represent topography on a
237    regular \textit{lat-lon} grid extending from $70^{\circ }N$ to
238    $70^{\circ }S$. The model is driven using monthly-mean winds with
239    mixed boundary conditions on temperature and salinity at the surface.
240    The transfer properties of ocean eddies, convection and mixing is
241    parameterized in this model.
242    
243  Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
244  global ocean model run with 15 vertical levels. Lopped cells are used to  circulation of the global ocean in Sverdrups.
 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ  
 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with  
 mixed boundary conditions on temperature and salinity at the surface. The  
 transfer properties of ocean eddies, convection and mixing is parameterized  
 in this model.  
   
 Fig.E2b shows the meridional overturning circulation of the global ocean in  
 Sverdrups.  
245    
246  %%CNHbegin  %%CNHbegin
247  \input{part1/global_circ_figure}  \input{part1/global_circ_figure}
248  %%CNHend  %%CNHend
249    
250  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
251    \begin{rawhtml}
252    <!-- CMIREDIR:mixing_over_topography: -->
253    \end{rawhtml}
254    
255    
256  Dense plumes generated by localized cooling on the continental shelf of the  Dense plumes generated by localized cooling on the continental shelf of the
257  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
258  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
259  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
260  eddies. The simulation shown in the figure (blue is cold dense fluid, red is  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
261    (blue is cold dense fluid, red is
262  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
263  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
264  slope but is deflected along the slope by rotation. It is found that  slope but is deflected along the slope by rotation. It is found that
# Line 208  instability of the along-slope current. Line 271  instability of the along-slope current.
271  %%CNHend  %%CNHend
272    
273  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
274    \begin{rawhtml}
275    <!-- CMIREDIR:boundary_forced_internal_waves: -->
276    \end{rawhtml}
277    
278  The unique ability of MITgcm to treat non-hydrostatic dynamics in the  The unique ability of MITgcm to treat non-hydrostatic dynamics in the
279  presence of complex geometry makes it an ideal tool to study internal wave  presence of complex geometry makes it an ideal tool to study internal wave
280  dynamics and mixing in oceanic canyons and ridges driven by large amplitude  dynamics and mixing in oceanic canyons and ridges driven by large amplitude
281  barotropic tidal currents imposed through open boundary conditions.  barotropic tidal currents imposed through open boundary conditions.
282    
283  Fig. ?.? shows the influence of cross-slope topographic variations on  Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
284    topographic variations on
285  internal wave breaking - the cross-slope velocity is in color, the density  internal wave breaking - the cross-slope velocity is in color, the density
286  contoured. The internal waves are excited by application of open boundary  contoured. The internal waves are excited by application of open boundary
287  conditions on the left.\ They propagate to the sloping boundary (represented  conditions on the left. They propagate to the sloping boundary (represented
288  using MITgcm's finite volume spatial discretization) where they break under  using MITgcm's finite volume spatial discretization) where they break under
289  nonhydrostatic dynamics.  nonhydrostatic dynamics.
290    
# Line 226  nonhydrostatic dynamics. Line 293  nonhydrostatic dynamics.
293  %%CNHend  %%CNHend
294    
295  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
296    \begin{rawhtml}
297    <!-- CMIREDIR:parameter_sensitivity: -->
298    \end{rawhtml}
299    
300  Forward and tangent linear counterparts of MITgcm are supported using an  Forward and tangent linear counterparts of MITgcm are supported using an
301  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
302  data assimilation studies.  data assimilation studies.
303    
304  As one example of application of the MITgcm adjoint, Fig.E4 maps the  As one example of application of the MITgcm adjoint, Figure
305  gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial
306  of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $    \mathcal{H}}$where $J$ is the magnitude of the overturning
307  \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is  stream-function shown in figure \ref{fig:large-scale-circ} at
308  sensitive to heat fluxes over the Labrador Sea, one of the important sources  $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local
309  of deep water for the thermohaline circulations. This calculation also  air-sea heat flux over a 100 year period. We see that $J$ is sensitive
310    to heat fluxes over the Labrador Sea, one of the important sources of
311    deep water for the thermohaline circulations. This calculation also
312  yields sensitivities to all other model parameters.  yields sensitivities to all other model parameters.
313    
314  %%CNHbegin  %%CNHbegin
# Line 244  yields sensitivities to all other model Line 316  yields sensitivities to all other model
316  %%CNHend  %%CNHend
317    
318  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
319    \begin{rawhtml}
320    <!-- CMIREDIR:global_state_estimation: -->
321    \end{rawhtml}
322    
323    
324  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
325  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
326  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
327  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
328  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
329  etc. Figure ?.? shows an estimate of the time-mean surface elevation of the  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
330  ocean obtained by bringing the model in to consistency with altimetric and  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
331  in-situ observations over the period 1992-1997.  Both are obtained from assimilation bringing the model in to
332    consistency with altimetric and in-situ observations over the period
333    1992-1997.
334    
335  %% CNHbegin  %% CNHbegin
336  \input{part1/globes_figure}  \input{part1/assim_figure}
337  %% CNHend  %% CNHend
338    
339  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
340    \begin{rawhtml}
341  MITgcm is being used to study global biogeochemical cycles in the ocean. For  <!-- CMIREDIR:ocean_biogeo_cycles: -->
342  example one can study the effects of interannual changes in meteorological  \end{rawhtml}
343  forcing and upper ocean circulation on the fluxes of carbon dioxide and  
344  oxygen between the ocean and atmosphere. The figure shows the annual air-sea  MITgcm is being used to study global biogeochemical cycles in the
345  flux of oxygen and its relation to density outcrops in the southern oceans  ocean. For example one can study the effects of interannual changes in
346  from a single year of a global, interannually varying simulation.  meteorological forcing and upper ocean circulation on the fluxes of
347    carbon dioxide and oxygen between the ocean and atmosphere. Figure
348    \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its
349    relation to density outcrops in the southern oceans from a single year
350    of a global, interannually varying simulation. The simulation is run
351    at $1^{\circ}\times1^{\circ}$ resolution telescoping to
352    $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not
353    shown).
354    
355  %%CNHbegin  %%CNHbegin
356  \input{part1/biogeo_figure}  \input{part1/biogeo_figure}
357  %%CNHend  %%CNHend
358    
359  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
360    \begin{rawhtml}
361    <!-- CMIREDIR:classroom_exp: -->
362    \end{rawhtml}
363    
364  Figure ?.? shows MITgcm being used to simulate a laboratory experiment  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
365  enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
366  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
367  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
368  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
369  unstable. The stratification and depth of penetration of the lens is  unstable. The stratification and depth of penetration of the lens is
370  arrested by its instability in a process analogous to that whic sets the  arrested by its instability in a process analogous to that which sets the
371  stratification of the ACC.  stratification of the ACC.
372    
373  %%CNHbegin  %%CNHbegin
# Line 290  stratification of the ACC. Line 378  stratification of the ACC.
378  % $Name$  % $Name$
379    
380  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
381    \begin{rawhtml}
382    <!-- CMIREDIR:z-p_isomorphism: -->
383    \end{rawhtml}
384    
385  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
386  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
387  respective fluids - see fig.4  respective fluids - see figure \ref{fig:isomorphic-equations}.
388  \marginpar{  One system of hydrodynamical equations is written down
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  
389  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
390  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
391  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
392  modeling the atmosphere and height, $z$, if we are modeling the ocean.  modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
393    and height, $z$, if we are modeling the ocean (left hand side of figure
394    \ref{fig:isomorphic-equations}).
395    
396  %%CNHbegin  %%CNHbegin
397  \input{part1/zandpcoord_figure.tex}  \input{part1/zandpcoord_figure.tex}
# Line 311  velocity $\vec{\mathbf{v}}$, active trac Line 403  velocity $\vec{\mathbf{v}}$, active trac
403  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
404  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
405  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
406  a generic vertical coordinate, $r$, see fig.5  a generic vertical coordinate, $r$, so that the appropriate
407  \marginpar{  kinematic boundary conditions can be applied isomorphically
408  Fig.5 The vertical coordinate of model}:  see figure \ref{fig:zandp-vert-coord}.
409    
410  %%CNHbegin  %%CNHbegin
411  \input{part1/vertcoord_figure.tex}  \input{part1/vertcoord_figure.tex}
412  %%CNHend  %%CNHend
413    
414  \begin{equation*}  \begin{equation}
415  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
416  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
417  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
418  \end{equation*}  \end{equation}
419    
420  \begin{equation*}  \begin{equation}
421  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
422  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
423  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
424  \end{equation*}  \end{equation}
425    
426  \begin{equation}  \begin{equation}
427  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
428  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
429  \end{equation}  \end{equation}
430    
431  \begin{equation*}  \begin{equation}
432  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
433  \end{equation*}  \end{equation}
434    
435  \begin{equation*}  \begin{equation}
436  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
437  \end{equation*}  \label{eq:potential_temperature}
438    \end{equation}
439    
440  \begin{equation*}  \begin{equation}
441  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
442  \end{equation*}  \label{eq:humidity_salt}
443    \end{equation}
444    
445  Here:  Here:
446    
# Line 410  S\text{ is specific humidity in the atmo Line 504  S\text{ is specific humidity in the atmo
504  \end{equation*}  \end{equation*}
505    
506  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
507  extensive `physics' packages for atmosphere and ocean described in Chapter 6.  `physics' and forcing packages for atmosphere and ocean. These are described
508    in later chapters.
509    
510  \subsection{Kinematic Boundary conditions}  \subsection{Kinematic Boundary conditions}
511    
512  \subsubsection{vertical}  \subsubsection{vertical}
513    
514  at fixed and moving $r$ surfaces we set (see fig.5):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
515    
516  \begin{equation}  \begin{equation}
517  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
518  \label{eq:fixedbc}  \label{eq:fixedbc}
519  \end{equation}  \end{equation}
520    
521  \begin{equation}  \begin{equation}
522  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
523  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
524  \end{equation}  \end{equation}
525    
526  Here  Here
# Line 447  where $\vec{\mathbf{n}}$ is the normal t Line 542  where $\vec{\mathbf{n}}$ is the normal t
542    
543  \subsection{Atmosphere}  \subsection{Atmosphere}
544    
545  In the atmosphere, see fig.5, we interpret:  In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
546    
547  \begin{equation}  \begin{equation}
548  r=p\text{ is the pressure}  \label{eq:atmos-r}  r=p\text{ is the pressure}  \label{eq:atmos-r}
# Line 518  The boundary conditions at top and botto Line 613  The boundary conditions at top and botto
613  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
614  \end{eqnarray}  \end{eqnarray}
615    
616  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations
617  set of atmospheric equations which, for convenience, are written out in $p$  (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
618  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  set of atmospheric equations which, for convenience, are written out
619    in $p$ coordinates in Appendix Atmosphere - see
620    eqs(\ref{eq:atmos-prime}).
621    
622  \subsection{Ocean}  \subsection{Ocean}
623    
# Line 555  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 652  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
652  \end{eqnarray}  \end{eqnarray}
653  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
654    
655  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
656    of oceanic equations
657  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
658  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
659    
660  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
661  Non-hydrostatic forms}  Non-hydrostatic forms}
662    \begin{rawhtml}
663    <!-- CMIREDIR:non_hydrostatic: -->
664    \end{rawhtml}
665    
666    
667  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
668    
# Line 568  Let us separate $\phi $ in to surface, h Line 670  Let us separate $\phi $ in to surface, h
670  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
671  \label{eq:phi-split}  \label{eq:phi-split}
672  \end{equation}  \end{equation}
673  and write eq(\ref{incompressible}a,b) in the form:  %and write eq(\ref{eq:incompressible}) in the form:
674    %                  ^- this eq is missing (jmc) ; replaced with:
675    and write eq( \ref{eq:horizontal_mtm}) in the form:
676    
677  \begin{equation}  \begin{equation}
678  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 661  In the above `${r}$' is the distance fro Line 765  In the above `${r}$' is the distance fro
765    
766  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
767  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
768    
769  %%CNHbegin  %%CNHbegin
770  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 670  Fig.6 Spherical polar coordinate system. Line 772  Fig.6 Spherical polar coordinate system.
772    
773  \subsubsection{Shallow atmosphere approximation}  \subsubsection{Shallow atmosphere approximation}
774    
775  Most models are based on the `hydrostatic primitive equations' (HPE's) in  Most models are based on the `hydrostatic primitive equations' (HPE's)
776  which the vertical momentum equation is reduced to a statement of  in which the vertical momentum equation is reduced to a statement of
777  hydrostatic balance and the `traditional approximation' is made in which the  hydrostatic balance and the `traditional approximation' is made in
778  Coriolis force is treated approximately and the shallow atmosphere  which the Coriolis force is treated approximately and the shallow
779  approximation is made.\ The MITgcm need not make the `traditional  atmosphere approximation is made.  MITgcm need not make the
780  approximation'. To be able to support consistent non-hydrostatic forms the  `traditional approximation'. To be able to support consistent
781  shallow atmosphere approximation can be relaxed - when dividing through by $  non-hydrostatic forms the shallow atmosphere approximation can be
782  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,  relaxed - when dividing through by $ r $ in, for example,
783  the radius of the earth.  (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
784    the earth.
785    
786  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
787    \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
788    
789  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
790    
# Line 714  et.al., 1997a. As in \textbf{HPE }only a Line 818  et.al., 1997a. As in \textbf{HPE }only a
818    
819  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}  \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
820    
821  The MIT model presently supports a full non-hydrostatic ocean isomorph, but  MITgcm presently supports a full non-hydrostatic ocean isomorph, but
822  only a quasi-non-hydrostatic atmospheric isomorph.  only a quasi-non-hydrostatic atmospheric isomorph.
823    
824  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
# Line 724  In the non-hydrostatic ocean model all t Line 828  In the non-hydrostatic ocean model all t
828  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
829  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
830  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
831  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
832  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
833  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
834  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 773  coordinates are supported - see eqs(\ref Line 877  coordinates are supported - see eqs(\ref
877  \subsection{Solution strategy}  \subsection{Solution strategy}
878    
879  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
880  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
881  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
882  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
883  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
884  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 799  Marshall et al, 1997) resulting in a non Line 902  Marshall et al, 1997) resulting in a non
902  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
903    
904  \subsection{Finding the pressure field}  \subsection{Finding the pressure field}
905    \label{sec:finding_the_pressure_field}
906    
907  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
908  pressure field must be obtained diagnostically. We proceed, as before, by  pressure field must be obtained diagnostically. We proceed, as before, by
# Line 831  atmospheric pressure pushing down on the Line 935  atmospheric pressure pushing down on the
935    
936  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
937    
938  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
939  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
940    
941  \begin{equation*}  \begin{equation*}
942  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 857  r $. The above can be rearranged to yiel Line 961  r $. The above can be rearranged to yiel
961  where we have incorporated a source term.  where we have incorporated a source term.
962    
963  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
964  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
965  be written  be written
966  \begin{equation}  \begin{equation}
967  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 865  be written Line 969  be written
969  \end{equation}  \end{equation}
970  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
971    
972  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
973  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
974  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
975  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
976    
977  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
978    
979  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
980  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
981  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
982    
983  \begin{equation}  \begin{equation}
984  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 904  tangential component of velocity, $v_{T} Line 1008  tangential component of velocity, $v_{T}
1008  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
1009  equations - see below.  equations - see below.
1010    
1011  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1012    
1013  \begin{equation}  \begin{equation}
1014  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 944  If the flow is `close' to hydrostatic ba Line 1048  If the flow is `close' to hydrostatic ba
1048  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
1049  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1050    
1051  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1052  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1053    
1054  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 952  does not vanish at $r=R_{moving}$, and s Line 1056  does not vanish at $r=R_{moving}$, and s
1056  \subsubsection{Forcing}  \subsubsection{Forcing}
1057    
1058  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1059  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1060    
1061  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1062    
# Line 999  salinity ... ). Line 1103  salinity ... ).
1103    
1104  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1105    
1106  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in
1107  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
1108    (so-called) `vector invariant' form:
1109    
1110  \begin{equation}  \begin{equation}
1111  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1018  to discretize the model. Line 1123  to discretize the model.
1123    
1124  \subsection{Adjoint}  \subsection{Adjoint}
1125    
1126  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1127  in Chapter 5.  in Chapter 5.
1128    
1129  % $Header$  % $Header$
# Line 1111  In $p$-coordinates, the upper boundary a Line 1216  In $p$-coordinates, the upper boundary a
1216  surface ($\phi $ is imposed and $\omega \neq 0$).  surface ($\phi $ is imposed and $\omega \neq 0$).
1217    
1218  \subsubsection{Splitting the geo-potential}  \subsubsection{Splitting the geo-potential}
1219    \label{sec:hpe-p-geo-potential-split}
1220    
1221  For the purposes of initialization and reducing round-off errors, the model  For the purposes of initialization and reducing round-off errors, the model
1222  deals with perturbations from reference (or ``standard'') profiles. For  deals with perturbations from reference (or ``standard'') profiles. For
# Line 1140  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1246  _{o}(p_{o})=g~Z_{topo}$, defined:
1246  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1247  \begin{eqnarray}  \begin{eqnarray}
1248  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1249  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
1250    \label{eq:atmos-prime} \\
1251  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1252  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1253  \partial p} &=&0 \\  \partial p} &=&0 \\
1254  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1255  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1256  \end{eqnarray}  \end{eqnarray}
1257    
1258  % $Header$  % $Header$
# Line 1164  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1271  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1271  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1272  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1273  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1274  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1275  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1276  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1277  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1278    \label{eq:non-boussinesq}
1279  \end{eqnarray}  \end{eqnarray}
1280  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1281  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1282  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1283  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1284  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
# Line 1185  _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\ Line 1293  _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\
1293  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexpansion}  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexpansion}
1294  \end{equation}  \end{equation}
1295    
1296  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
1297  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
1298  {eq-zns-cont} gives:  \ref{eq-zns-cont} gives:
1299  \begin{equation}  \begin{equation}
1300  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1301  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.25

  ViewVC Help
Powered by ViewVC 1.1.22