611 |
atmosphere)} \label{eq:moving-bc-atmos} |
atmosphere)} \label{eq:moving-bc-atmos} |
612 |
\end{eqnarray} |
\end{eqnarray} |
613 |
|
|
614 |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) |
Then the (hydrostatic form of) equations |
615 |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
(\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent |
616 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
set of atmospheric equations which, for convenience, are written out |
617 |
|
in $p$ coordinates in Appendix Atmosphere - see |
618 |
|
eqs(\ref{eq:atmos-prime}). |
619 |
|
|
620 |
\subsection{Ocean} |
\subsection{Ocean} |
621 |
|
|
1100 |
|
|
1101 |
\subsection{Vector invariant form} |
\subsection{Vector invariant form} |
1102 |
|
|
1103 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
For some purposes it is advantageous to write momentum advection in |
1104 |
{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: |
eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the |
1105 |
|
(so-called) `vector invariant' form: |
1106 |
|
|
1107 |
\begin{equation} |
\begin{equation} |
1108 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
1242 |
The final form of the HPE's in p coordinates is then: |
The final form of the HPE's in p coordinates is then: |
1243 |
\begin{eqnarray} |
\begin{eqnarray} |
1244 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
1245 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
1246 |
|
\label{eq:atmos-prime} \\ |
1247 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
1248 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
1249 |
\partial p} &=&0 \\ |
\partial p} &=&0 \\ |
1289 |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
1290 |
\end{equation} |
\end{equation} |
1291 |
|
|
1292 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is |
1293 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: |
the reciprocal of the sound speed ($c_{s}$) squared. Substituting into |
1294 |
|
\ref{eq-zns-cont} gives: |
1295 |
\begin{equation} |
\begin{equation} |
1296 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
1297 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |