/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Tue Oct 9 10:48:03 2001 UTC revision 1.18 by afe, Tue Mar 23 15:29:39 2004 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
 %\usepackage{oldgerm}  
 % I commented the following because it introduced excessive white space  
 %\usepackage{palatcm}              % better PDF  
 % page headers and footers  
 %\pagestyle{fancy}  
 % referencing  
 %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}  
 %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}  
 %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}  
 %% \newcommand{\reftabno}[1]{\ref{tab:#1}}  
 %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}  
 %% \newcommand{\reffigno}[1]{\ref{fig:#1}}  
 % stuff for psfrag  
 %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}  
 %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}  
 % This allows numbering of subsubsections  
 % This changes the the chapter title  
 %\renewcommand{\chaptername}{Section}  
   
   
 %%%% \documentclass[12pt]{book}  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 %%%% \usepackage{amsmath}  
 %%%% \usepackage{html}  
 %%%% \usepackage{epsfig}  
 %%%% \usepackage{graphics,subfigure}  
 %%%% \usepackage{array}  
 %%%% \usepackage{multirow}  
 %%%% \usepackage{fancyhdr}  
 %%%% \usepackage{psfrag}  
   
 %%%% %TCIDATA{OutputFilter=Latex.dll}  
 %%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}  
 %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}  
 %%%% %TCIDATA{Language=American English}  
   
 %%%% \fancyhead{}  
 %%%% \fancyhead[LO]{\slshape \rightmark}  
 %%%% \fancyhead[RE]{\slshape \leftmark}  
 %%%% \fancyhead[RO,LE]{\thepage}  
 %%%% \fancyfoot[CO,CE]{\today}  
 %%%% \fancyfoot[RO,LE]{ }  
 %%%% \renewcommand{\headrulewidth}{0.4pt}  
 %%%% \renewcommand{\footrulewidth}{0.4pt}  
 %%%% \setcounter{secnumdepth}{3}  
 %%%% \input{tcilatex}  
 %%%%  
 %%%% \begin{document}  
 %%%%  
 %%%% \tableofcontents  
 %%%%  
 %%%% \pagebreak  
3    
4  %%%% \part{MIT GCM basics}  %tci%\documentclass[12pt]{book}
5    %tci%\usepackage{amsmath}
6    %tci%\usepackage{html}
7    %tci%\usepackage{epsfig}
8    %tci%\usepackage{graphics,subfigure}
9    %tci%\usepackage{array}
10    %tci%\usepackage{multirow}
11    %tci%\usepackage{fancyhdr}
12    %tci%\usepackage{psfrag}
13    
14    %tci%%TCIDATA{OutputFilter=Latex.dll}
15    %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16    %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17    %tci%%TCIDATA{Language=American English}
18    
19    %tci%\fancyhead{}
20    %tci%\fancyhead[LO]{\slshape \rightmark}
21    %tci%\fancyhead[RE]{\slshape \leftmark}
22    %tci%\fancyhead[RO,LE]{\thepage}
23    %tci%\fancyfoot[CO,CE]{\today}
24    %tci%\fancyfoot[RO,LE]{ }
25    %tci%\renewcommand{\headrulewidth}{0.4pt}
26    %tci%\renewcommand{\footrulewidth}{0.4pt}
27    %tci%\setcounter{secnumdepth}{3}
28    %tci%\input{tcilatex}
29    
30    %tci%\begin{document}
31    
32    %tci%\tableofcontents
33    
34    
35  % Section: Overview  % Section: Overview
36    
37  % $Header$  % $Header$
38  % $Name$  % $Name$
39    
40  \section{Introduction}  This document provides the reader with the information necessary to
   
 This documentation provides the reader with the information necessary to  
41  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
42  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
43  numerical algorithms the model employs and a description of the associated  numerical algorithms the model employs and a description of the associated
# Line 72  are available. A number of examples illu Line 47  are available. A number of examples illu
47  both process and general circulation studies of the atmosphere and ocean are  both process and general circulation studies of the atmosphere and ocean are
48  also presented.  also presented.
49    
50    \section{Introduction}
51    \begin{rawhtml}
52    <!-- CMIREDIR:innovations -->
53    \end{rawhtml}
54    
55    
56  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
57    
58  \begin{itemize}  \begin{itemize}
59  \item it can be used to study both atmospheric and oceanic phenomena; one  \item it can be used to study both atmospheric and oceanic phenomena; one
60  hydrodynamical kernel is used to drive forward both atmospheric and oceanic  hydrodynamical kernel is used to drive forward both atmospheric and oceanic
61  models - see fig.1%  models - see fig \ref{fig:onemodel}
62  \marginpar{  
63  Fig.1 One model}\ref{fig:onemodel}  %% CNHbegin
64    \input{part1/one_model_figure}
65    %% CNHend
66    
67  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
68  small-scale and large scale processes - see fig.2%  small-scale and large scale processes - see fig \ref{fig:all-scales}
69  \marginpar{  
70  Fig.2 All scales}\ref{fig:all-scales}  %% CNHbegin
71    \input{part1/all_scales_figure}
72    %% CNHend
73    
74  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
75  discretization and support for the treatment of irregular geometries using  discretization and support for the treatment of irregular geometries using
76  orthogonal curvilinear grids and shaved cells - see fig.3%  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
77  \marginpar{  
78  Fig.3 Finite volumes}\ref{fig:Finite volumes}  %% CNHbegin
79    \input{part1/fvol_figure}
80    %% CNHend
81    
82  \item tangent linear and adjoint counterparts are automatically maintained  \item tangent linear and adjoint counterparts are automatically maintained
83  along with the forward model, permitting sensitivity and optimization  along with the forward model, permitting sensitivity and optimization
# Line 101  computational platforms. Line 88  computational platforms.
88  \end{itemize}  \end{itemize}
89    
90  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
91  listed in an Appendix.  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}:
92    
93    \begin{verbatim}
94    Hill, C. and J. Marshall, (1995)
95    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
96    Parallel Computational Fluid Dynamics
97    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
98    and Results Using Parallel Computers, 545-552.
99    Elsevier Science B.V.: New York
100    
101    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
102    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
103    J. Geophysical Res., 102(C3), 5733-5752.
104    
105    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
106    A finite-volume, incompressible Navier Stokes model for studies of the ocean
107    on parallel computers,
108    J. Geophysical Res., 102(C3), 5753-5766.
109    
110    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
111    Representation of topography by shaved cells in a height coordinate ocean
112    model
113    Mon Wea Rev, vol 125, 2293-2315
114    
115    Marshall, J., Jones, H. and C. Hill, (1998)
116    Efficient ocean modeling using non-hydrostatic algorithms
117    Journal of Marine Systems, 18, 115-134
118    
119    Adcroft, A., Hill C. and J. Marshall: (1999)
120    A new treatment of the Coriolis terms in C-grid models at both high and low
121    resolutions,
122    Mon. Wea. Rev. Vol 127, pages 1928-1936
123    
124    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
125    A Strategy for Terascale Climate Modeling.
126    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
127    in Meteorology, pages 406-425
128    World Scientific Publishing Co: UK
129    
130    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
131    Construction of the adjoint MIT ocean general circulation model and
132    application to Atlantic heat transport variability
133    J. Geophysical Res., 104(C12), 29,529-29,547.
134    
135    \end{verbatim}
136    
137  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
138  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
 \pagebreak  
139    
140  % $Header$  % $Header$
141  % $Name$  % $Name$
# Line 114  give a feel for the wide range of proble Line 144  give a feel for the wide range of proble
144    
145  The MITgcm has been designed and used to model a wide range of phenomena,  The MITgcm has been designed and used to model a wide range of phenomena,
146  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
147  atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
148  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
149  of them here. A more detailed description of the underlying formulation,  of them here. A more detailed description of the underlying formulation,
150  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
151  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
152  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
153  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
154  described in detail in the documentation.  described in detail in the documentation.
155    
156  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
157    \begin{rawhtml}
158    <!-- CMIREDIR:atmospheric_example -->
159    \end{rawhtml}
160    
161    
 A novel feature of MITgcm is its ability to simulate both atmospheric and  
 oceanographic flows at both small and large scales.  
162    
163  Fig.E1a.\ref{fig:Held-Suarez} shows an instantaneous plot of the 500$mb$  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
164    both atmospheric and oceanographic flows at both small and large scales.
165    
166    Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
167  temperature field obtained using the atmospheric isomorph of MITgcm run at  temperature field obtained using the atmospheric isomorph of MITgcm run at
168  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole  2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
169  (blue) and warm air along an equatorial band (red). Fully developed  (blue) and warm air along an equatorial band (red). Fully developed
# Line 139  radiative-convective equilibrium profile Line 174  radiative-convective equilibrium profile
174  in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -  in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
175  there are no mountains or land-sea contrast.  there are no mountains or land-sea contrast.
176    
177    %% CNHbegin
178    \input{part1/cubic_eddies_figure}
179    %% CNHend
180    
181  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
182  globe permitting a uniform gridding and obviated the need to fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
183  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
184  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
185    
186  Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal  Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
187  wind and meridional overturning streamfunction from a 20-level version of  wind from a 20-level configuration of
188  the model. It compares favorable with more conventional spatial  the model. It compares favorable with more conventional spatial
189  discretization approaches.  discretization approaches. The two plots show the field calculated using the
190    cube-sphere grid and the flow calculated using a regular, spherical polar
191  A regular spherical lat-lon grid can also be used.  latitude-longitude grid. Both grids are supported within the model.
192    
193    %% CNHbegin
194    \input{part1/hs_zave_u_figure}
195    %% CNHend
196    
197  \subsection{Ocean gyres}  \subsection{Ocean gyres}
198    \begin{rawhtml}
199    <!-- CMIREDIR:oceanic_example -->
200    \end{rawhtml}
201    \begin{rawhtml}
202    <!-- CMIREDIR:ocean_gyres -->
203    \end{rawhtml}
204    
205  Baroclinic instability is a ubiquitous process in the ocean, as well as the  Baroclinic instability is a ubiquitous process in the ocean, as well as the
206  atmosphere. Ocean eddies play an important role in modifying the  atmosphere. Ocean eddies play an important role in modifying the
# Line 161  diffusive patterns of ocean currents. Bu Line 210  diffusive patterns of ocean currents. Bu
210  increased until the baroclinic instability process is resolved, numerical  increased until the baroclinic instability process is resolved, numerical
211  solutions of a different and much more realistic kind, can be obtained.  solutions of a different and much more realistic kind, can be obtained.
212    
213  Fig. ?.? shows the surface temperature and velocity field obtained from  Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
214  MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$  field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
215    resolution on a $lat-lon$
216  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
217  (to avoid the converging of meridian in northern latitudes). 21 vertical  (to avoid the converging of meridian in northern latitudes). 21 vertical
218  levels are used in the vertical with a `lopped cell' representation of  levels are used in the vertical with a `lopped cell' representation of
219  topography. The development and propagation of anomalously warm and cold  topography. The development and propagation of anomalously warm and cold
220  eddies can be clearly been seen in the Gulf Stream region. The transport of  eddies can be clearly seen in the Gulf Stream region. The transport of
221  warm water northward by the mean flow of the Gulf Stream is also clearly  warm water northward by the mean flow of the Gulf Stream is also clearly
222  visible.  visible.
223    
224    %% CNHbegin
225    \input{part1/atl6_figure}
226    %% CNHend
227    
228    
229  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
230    \begin{rawhtml}
231    <!-- CMIREDIR:global_ocean_circulation -->
232    \end{rawhtml}
233    
234  Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
235    the surface of a 4$^{\circ }$
236  global ocean model run with 15 vertical levels. Lopped cells are used to  global ocean model run with 15 vertical levels. Lopped cells are used to
237  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ  represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
238  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with  }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
# Line 181  mixed boundary conditions on temperature Line 240  mixed boundary conditions on temperature
240  transfer properties of ocean eddies, convection and mixing is parameterized  transfer properties of ocean eddies, convection and mixing is parameterized
241  in this model.  in this model.
242    
243  Fig.E2b shows the meridional overturning circulation of the global ocean in  Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
244  Sverdrups.  circulation of the global ocean in Sverdrups.
245    
246    %%CNHbegin
247    \input{part1/global_circ_figure}
248    %%CNHend
249    
250  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
251    \begin{rawhtml}
252    <!-- CMIREDIR:mixing_over_topography -->
253    \end{rawhtml}
254    
255    
256  Dense plumes generated by localized cooling on the continental shelf of the  Dense plumes generated by localized cooling on the continental shelf of the
257  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
258  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
259  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
260  eddies. The simulation shown in the figure (blue is cold dense fluid, red is  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
261    (blue is cold dense fluid, red is
262  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
263  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
264  slope but is deflected along the slope by rotation. It is found that  slope but is deflected along the slope by rotation. It is found that
# Line 198  entrainment in the vertical plane is red Line 266  entrainment in the vertical plane is red
266  strong, and replaced by lateral entrainment due to the baroclinic  strong, and replaced by lateral entrainment due to the baroclinic
267  instability of the along-slope current.  instability of the along-slope current.
268    
269    %%CNHbegin
270    \input{part1/convect_and_topo}
271    %%CNHend
272    
273  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
274    \begin{rawhtml}
275    <!-- CMIREDIR:boundary_forced_internal_waves -->
276    \end{rawhtml}
277    
278  The unique ability of MITgcm to treat non-hydrostatic dynamics in the  The unique ability of MITgcm to treat non-hydrostatic dynamics in the
279  presence of complex geometry makes it an ideal tool to study internal wave  presence of complex geometry makes it an ideal tool to study internal wave
280  dynamics and mixing in oceanic canyons and ridges driven by large amplitude  dynamics and mixing in oceanic canyons and ridges driven by large amplitude
281  barotropic tidal currents imposed through open boundary conditions.  barotropic tidal currents imposed through open boundary conditions.
282    
283  Fig. ?.? shows the influence of cross-slope topographic variations on  Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
284    topographic variations on
285  internal wave breaking - the cross-slope velocity is in color, the density  internal wave breaking - the cross-slope velocity is in color, the density
286  contoured. The internal waves are excited by application of open boundary  contoured. The internal waves are excited by application of open boundary
287  conditions on the left.\ They propagate to the sloping boundary (represented  conditions on the left. They propagate to the sloping boundary (represented
288  using MITgcm's finite volume spatial discretization) where they break under  using MITgcm's finite volume spatial discretization) where they break under
289  nonhydrostatic dynamics.  nonhydrostatic dynamics.
290    
291    %%CNHbegin
292    \input{part1/boundary_forced_waves}
293    %%CNHend
294    
295  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
296    \begin{rawhtml}
297    <!-- CMIREDIR:parameter_sensitivity -->
298    \end{rawhtml}
299    
300  Forward and tangent linear counterparts of MITgcm are supported using an  Forward and tangent linear counterparts of MITgcm are supported using an
301  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
302  data assimilation studies.  data assimilation studies.
303    
304  As one example of application of the MITgcm adjoint, Fig.E4 maps the  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
305  gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
306  of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $%  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
307  \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is  at 60$^{\circ }$N and $
308    \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
309    a 100 year period. We see that $J$ is
310  sensitive to heat fluxes over the Labrador Sea, one of the important sources  sensitive to heat fluxes over the Labrador Sea, one of the important sources
311  of deep water for the thermohaline circulations. This calculation also  of deep water for the thermohaline circulations. This calculation also
312  yields sensitivities to all other model parameters.  yields sensitivities to all other model parameters.
313    
314    %%CNHbegin
315    \input{part1/adj_hf_ocean_figure}
316    %%CNHend
317    
318  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
319    \begin{rawhtml}
320    <!-- CMIREDIR:global_state_estimation -->
321    \end{rawhtml}
322    
323    
324  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
325  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
326  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
327  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
328  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
329  etc. Figure ?.? shows an estimate of the time-mean surface elevation of the  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
330  ocean obtained by bringing the model in to consistency with altimetric and  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
331  in-situ observations over the period 1992-1997.  Both are obtained from assimilation bringing the model in to
332    consistency with altimetric and in-situ observations over the period
333    1992-1997.
334    
335    %% CNHbegin
336    \input{part1/assim_figure}
337    %% CNHend
338    
339  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
340    \begin{rawhtml}
341    <!-- CMIREDIR:ocean_biogeo_cycles -->
342    \end{rawhtml}
343    
344  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the ocean. For
345  example one can study the effects of interannual changes in meteorological  example one can study the effects of interannual changes in meteorological
346  forcing and upper ocean circulation on the fluxes of carbon dioxide and  forcing and upper ocean circulation on the fluxes of carbon dioxide and
347  oxygen between the ocean and atmosphere. The figure shows the annual air-sea  oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
348  flux of oxygen and its relation to density outcrops in the southern oceans  the annual air-sea flux of oxygen and its relation to density outcrops in
349  from a single year of a global, interannually varying simulation.  the southern oceans from a single year of a global, interannually varying
350    simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
351  Chris - get figure here: http://puddle.mit.edu/\symbol{126}%  telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
352  mick/biogeochem.html  
353    %%CNHbegin
354    \input{part1/biogeo_figure}
355    %%CNHend
356    
357  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
358    \begin{rawhtml}
359    <!-- CMIREDIR:classroom_exp -->
360    \end{rawhtml}
361    
362  Figure ?.? shows MITgcm being used to simulate a laboratory experiment  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
363  enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
364  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
365  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
366  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
367  unstable. The stratification and depth of penetration of the lens is  unstable. The stratification and depth of penetration of the lens is
368  arrested by its instability in a process analogous to that whic sets the  arrested by its instability in a process analogous to that which sets the
369  stratification of the ACC.  stratification of the ACC.
370    
371    %%CNHbegin
372    \input{part1/lab_figure}
373    %%CNHend
374    
375  % $Header$  % $Header$
376  % $Name$  % $Name$
377    
378  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
379    \begin{rawhtml}
380    <!-- CMIREDIR:z-p_isomorphism -->
381    \end{rawhtml}
382    
383  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
384  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
385  respective fluids - see fig.4%  respective fluids - see figure \ref{fig:isomorphic-equations}.
386  \marginpar{  One system of hydrodynamical equations is written down
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  
387  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
388  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
389  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
390  modeling the atmosphere and height, $z$, if we are modeling the ocean.  modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
391    and height, $z$, if we are modeling the ocean (left hand side of figure
392    \ref{fig:isomorphic-equations}).
393    
394    %%CNHbegin
395    \input{part1/zandpcoord_figure.tex}
396    %%CNHend
397    
398  The state of the fluid at any time is characterized by the distribution of  The state of the fluid at any time is characterized by the distribution of
399  velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a  velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
# Line 281  velocity $\vec{\mathbf{v}}$, active trac Line 401  velocity $\vec{\mathbf{v}}$, active trac
401  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
402  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
403  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
404  a generic vertical coordinate, $r$, see fig.5%  a generic vertical coordinate, $r$, so that the appropriate
405  \marginpar{  kinematic boundary conditions can be applied isomorphically
406  Fig.5 The vertical coordinate of model}:  see figure \ref{fig:zandp-vert-coord}.
407    
408    %%CNHbegin
409    \input{part1/vertcoord_figure.tex}
410    %%CNHend
411    
412  \begin{equation*}  \begin{equation*}
413  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
414  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
415  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
416  \end{equation*}  \end{equation*}
417    
418  \begin{equation*}  \begin{equation}
419  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
420  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
421  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
422  \end{equation*}  \end{equation}
423    
424  \begin{equation}  \begin{equation}
425  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
426  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
427  \end{equation}  \end{equation}
428    
429  \begin{equation*}  \begin{equation}
430  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
431  \end{equation*}  \end{equation}
432    
433  \begin{equation*}  \begin{equation}
434  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
435  \end{equation*}  \label{eq:potential_temperature}
436    \end{equation}
437    
438  \begin{equation*}  \begin{equation}
439  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
440  \end{equation*}  \label{eq:humidity_salt}
441    \end{equation}
442    
443  Here:  Here:
444    
# Line 326  is the total derivative} Line 452  is the total derivative}
452  \end{equation*}  \end{equation*}
453    
454  \begin{equation*}  \begin{equation*}
455  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
456  \text{ is the `grad' operator}  \text{ is the `grad' operator}
457  \end{equation*}  \end{equation*}
458  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
459  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
460  is a unit vector in the vertical  is a unit vector in the vertical
461    
# Line 363  S\text{ is specific humidity in the atmo Line 489  S\text{ is specific humidity in the atmo
489  \end{equation*}  \end{equation*}
490    
491  \begin{equation*}  \begin{equation*}
492  \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%  \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
493  \mathbf{v}}  \mathbf{v}}
494  \end{equation*}  \end{equation*}
495    
# Line 376  S\text{ is specific humidity in the atmo Line 502  S\text{ is specific humidity in the atmo
502  \end{equation*}  \end{equation*}
503    
504  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
505  extensive `physics' packages for atmosphere and ocean described in Chapter 6.  `physics' and forcing packages for atmosphere and ocean. These are described
506    in later chapters.
507    
508  \subsection{Kinematic Boundary conditions}  \subsection{Kinematic Boundary conditions}
509    
510  \subsubsection{vertical}  \subsubsection{vertical}
511    
512  at fixed and moving $r$ surfaces we set (see fig.5):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
513    
514  \begin{equation}  \begin{equation}
515  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
516  \label{eq:fixedbc}  \label{eq:fixedbc}
517  \end{equation}  \end{equation}
518    
519  \begin{equation}  \begin{equation}
520  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
521  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
522  \end{equation}  \end{equation}
523    
524  Here  Here
# Line 408  of motion. Line 535  of motion.
535    
536  \begin{equation}  \begin{equation}
537  \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow}  \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow}
538  \end{equation}%  \end{equation}
539  where $\vec{\mathbf{n}}$ is the normal to a solid boundary.  where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
540    
541  \subsection{Atmosphere}  \subsection{Atmosphere}
542    
543  In the atmosphere, see fig.5, we interpret:  In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
544    
545  \begin{equation}  \begin{equation}
546  r=p\text{ is the pressure}  \label{eq:atmos-r}  r=p\text{ is the pressure}  \label{eq:atmos-r}
# Line 445  where Line 572  where
572    
573  \begin{equation*}  \begin{equation*}
574  T\text{ is absolute temperature}  T\text{ is absolute temperature}
575  \end{equation*}%  \end{equation*}
576  \begin{equation*}  \begin{equation*}
577  p\text{ is the pressure}  p\text{ is the pressure}
578  \end{equation*}%  \end{equation*}
579  \begin{eqnarray*}  \begin{eqnarray*}
580  &&z\text{ is the height of the pressure surface} \\  &&z\text{ is the height of the pressure surface} \\
581  &&g\text{ is the acceleration due to gravity}  &&g\text{ is the acceleration due to gravity}
# Line 458  In the above the ideal gas law, $p=\rho Line 585  In the above the ideal gas law, $p=\rho
585  the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)  the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
586  \begin{equation}  \begin{equation}
587  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner}  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner}
588  \end{equation}%  \end{equation}
589  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
590  constant and $c_{p}$ the specific heat of air at constant pressure.  constant and $c_{p}$ the specific heat of air at constant pressure.
591    
# Line 484  The boundary conditions at top and botto Line 611  The boundary conditions at top and botto
611  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
612  \end{eqnarray}  \end{eqnarray}
613    
614  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
615  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
616  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
617    
618  \subsection{Ocean}  \subsection{Ocean}
# Line 508  At the bottom of the ocean: $R_{fixed}(x Line 635  At the bottom of the ocean: $R_{fixed}(x
635    
636  The surface of the ocean is given by: $R_{moving}=\eta $  The surface of the ocean is given by: $R_{moving}=\eta $
637    
638  The position of the resting free surface of the ocean is given by $%  The position of the resting free surface of the ocean is given by $
639  R_{o}=Z_{o}=0$.  R_{o}=Z_{o}=0$.
640    
641  Boundary conditions are:  Boundary conditions are:
# Line 516  Boundary conditions are: Line 643  Boundary conditions are:
643  \begin{eqnarray}  \begin{eqnarray}
644  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean}  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean}
645  \\  \\
646  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
647  \label{eq:moving-bc-ocean}}  \label{eq:moving-bc-ocean}}
648  \end{eqnarray}  \end{eqnarray}
649  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
650    
651  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
652    of oceanic equations
653  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
654  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
655    
656  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
657  Non-hydrostatic forms}  Non-hydrostatic forms}
658    \begin{rawhtml}
659    <!-- CMIREDIR:non_hydrostatic -->
660    \end{rawhtml}
661    
662    
663  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
664    
665  \begin{equation}  \begin{equation}
666  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
667  \label{eq:phi-split}  \label{eq:phi-split}
668  \end{equation}%  \end{equation}
669  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
670    
671  \begin{equation}  \begin{equation}
672  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 547  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l Line 679  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l
679  \end{equation}  \end{equation}
680    
681  \begin{equation}  \begin{equation}
682  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
683  \partial r}=G_{\dot{r}}  \label{eq:mom-w}  \partial r}=G_{\dot{r}}  \label{eq:mom-w}
684  \end{equation}  \end{equation}
685  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
686    
687  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
688  {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis  {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
689  terms in the momentum equations. In spherical coordinates they take the form%  terms in the momentum equations. In spherical coordinates they take the form
690  \footnote{%  \footnote{
691  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
692  in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%  in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
693  {eq:gw-spherical}) are omitted; the singly-underlined terms are included in  {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
694  the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%  the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
695  \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full  \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
696  discussion:  discussion:
697    
# Line 567  discussion: Line 699  discussion:
699  \left.  \left.
700  \begin{tabular}{l}  \begin{tabular}{l}
701  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
702  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
703  \\  \\
704  $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $  $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
705  \\  \\
706  $+\mathcal{F}_{u}$%  $+\mathcal{F}_{u}$
707  \end{tabular}%  \end{tabular}
708  \ \right\} \left\{  \ \right\} \left\{
709  \begin{tabular}{l}  \begin{tabular}{l}
710  \textit{advection} \\  \textit{advection} \\
711  \textit{metric} \\  \textit{metric} \\
712  \textit{Coriolis} \\  \textit{Coriolis} \\
713  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
714  \end{tabular}%  \end{tabular}
715  \ \right. \qquad  \label{eq:gu-speherical}  \ \right. \qquad  \label{eq:gu-speherical}
716  \end{equation}  \end{equation}
717    
# Line 587  $+\mathcal{F}_{u}$% Line 719  $+\mathcal{F}_{u}$%
719  \left.  \left.
720  \begin{tabular}{l}  \begin{tabular}{l}
721  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
722  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
723  $ \\  $ \\
724  $-\left\{ -2\Omega u\sin lat\right\} $ \\  $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
725  $+\mathcal{F}_{v}$%  $+\mathcal{F}_{v}$
726  \end{tabular}%  \end{tabular}
727  \ \right\} \left\{  \ \right\} \left\{
728  \begin{tabular}{l}  \begin{tabular}{l}
729  \textit{advection} \\  \textit{advection} \\
730  \textit{metric} \\  \textit{metric} \\
731  \textit{Coriolis} \\  \textit{Coriolis} \\
732  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
733  \end{tabular}%  \end{tabular}
734  \ \right. \qquad  \label{eq:gv-spherical}  \ \right. \qquad  \label{eq:gv-spherical}
735  \end{equation}%  \end{equation}
736  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
737    
738  \begin{equation}  \begin{equation}
# Line 608  $+\mathcal{F}_{v}$% Line 740  $+\mathcal{F}_{v}$%
740  \begin{tabular}{l}  \begin{tabular}{l}
741  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
742  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
743  ${+}\underline{{2\Omega u\cos lat}}$ \\  ${+}\underline{{2\Omega u\cos \varphi}}$ \\
744  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
745  \end{tabular}%  \end{tabular}
746  \ \right\} \left\{  \ \right\} \left\{
747  \begin{tabular}{l}  \begin{tabular}{l}
748  \textit{advection} \\  \textit{advection} \\
749  \textit{metric} \\  \textit{metric} \\
750  \textit{Coriolis} \\  \textit{Coriolis} \\
751  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
752  \end{tabular}%  \end{tabular}
753  \ \right.  \label{eq:gw-spherical}  \ \right.  \label{eq:gw-spherical}
754  \end{equation}%  \end{equation}
755  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
756    
757  In the above `${r}$' is the distance from the center of the earth and `$lat$%  In the above `${r}$' is the distance from the center of the earth and `$\varphi$
758  ' is latitude.  ' is latitude.
759    
760  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
761  OPERATORS.%  OPERATORS.
762  \marginpar{  
763  Fig.6 Spherical polar coordinate system.}  %%CNHbegin
764    \input{part1/sphere_coord_figure.tex}
765    %%CNHend
766    
767  \subsubsection{Shallow atmosphere approximation}  \subsubsection{Shallow atmosphere approximation}
768    
# Line 638  hydrostatic balance and the `traditional Line 772  hydrostatic balance and the `traditional
772  Coriolis force is treated approximately and the shallow atmosphere  Coriolis force is treated approximately and the shallow atmosphere
773  approximation is made.\ The MITgcm need not make the `traditional  approximation is made.\ The MITgcm need not make the `traditional
774  approximation'. To be able to support consistent non-hydrostatic forms the  approximation'. To be able to support consistent non-hydrostatic forms the
775  shallow atmosphere approximation can be relaxed - when dividing through by $%  shallow atmosphere approximation can be relaxed - when dividing through by $
776  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
777  the radius of the earth.  the radius of the earth.
778    
779  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
780    \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
781    
782  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
783    
# Line 651  terms in Eqs. (\ref{eq:gu-speherical} $\ Line 786  terms in Eqs. (\ref{eq:gu-speherical} $\
786  are neglected and `${r}$' is replaced by `$a$', the mean radius of the  are neglected and `${r}$' is replaced by `$a$', the mean radius of the
787  earth. Once the pressure is found at one level - e.g. by inverting a 2-d  earth. Once the pressure is found at one level - e.g. by inverting a 2-d
788  Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be  Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
789  computed at all other levels by integration of the hydrostatic relation, eq(%  computed at all other levels by integration of the hydrostatic relation, eq(
790  \ref{eq:hydrostatic}).  \ref{eq:hydrostatic}).
791    
792  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
793  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
794  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic  \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
795  contribution to the pressure field: only the terms underlined twice in Eqs. (%  contribution to the pressure field: only the terms underlined twice in Eqs. (
796  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
797  and, simultaneously, the shallow atmosphere approximation is relaxed. In  and, simultaneously, the shallow atmosphere approximation is relaxed. In
798  \textbf{QH}\ \textit{all} the metric terms are retained and the full  \textbf{QH}\ \textit{all} the metric terms are retained and the full
# Line 665  variation of the radial position of a pa Line 800  variation of the radial position of a pa
800  vertical momentum equation (\ref{eq:mom-w}) becomes:  vertical momentum equation (\ref{eq:mom-w}) becomes:
801    
802  \begin{equation*}  \begin{equation*}
803  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
804  \end{equation*}  \end{equation*}
805  making a small correction to the hydrostatic pressure.  making a small correction to the hydrostatic pressure.
806    
# Line 681  only a quasi-non-hydrostatic atmospheric Line 816  only a quasi-non-hydrostatic atmospheric
816    
817  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
818    
819  In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%  In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
820  {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A  {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
821  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
822  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
823  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
824  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
825  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
826  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
827  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 694  and Bromley, 1995; Marshall et.al.\ 1997 Line 829  and Bromley, 1995; Marshall et.al.\ 1997
829    
830  \paragraph{Quasi-nonhydrostatic Atmosphere}  \paragraph{Quasi-nonhydrostatic Atmosphere}
831    
832  In the non-hydrostatic version of our atmospheric model we approximate $\dot{%  In the non-hydrostatic version of our atmospheric model we approximate $\dot{
833  r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})  r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
834  (but only here) by:  (but only here) by:
835    
836  \begin{equation}  \begin{equation}
837  \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w}  \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w}
838  \end{equation}%  \end{equation}
839  where $p_{hy}$ is the hydrostatic pressure.  where $p_{hy}$ is the hydrostatic pressure.
840    
841  \subsubsection{Summary of equation sets supported by model}  \subsubsection{Summary of equation sets supported by model}
# Line 728  equations in $z-$coordinates are support Line 863  equations in $z-$coordinates are support
863    
864  \subparagraph{Non-hydrostatic}  \subparagraph{Non-hydrostatic}
865    
866  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
867  coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%  coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
868  {eq:ocean-salt}).  {eq:ocean-salt}).
869    
870  \subsection{Solution strategy}  \subsection{Solution strategy}
871    
872  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
873  NH} models is summarized in Fig.7.%  NH} models is summarized in Figure \ref{fig:solution-strategy}.
874  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
875  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
876  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
877  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 746  forward and $\dot{r}$ found from continu Line 880  forward and $\dot{r}$ found from continu
880  stepping forward the horizontal momentum equations; $\dot{r}$ is found by  stepping forward the horizontal momentum equations; $\dot{r}$ is found by
881  stepping forward the vertical momentum equation.  stepping forward the vertical momentum equation.
882    
883    %%CNHbegin
884    \input{part1/solution_strategy_figure.tex}
885    %%CNHend
886    
887  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
888  course, some complication that goes with the inclusion of $\cos \phi \ $%  course, some complication that goes with the inclusion of $\cos \varphi \ $
889  Coriolis terms and the relaxation of the shallow atmosphere approximation.  Coriolis terms and the relaxation of the shallow atmosphere approximation.
890  But this leads to negligible increase in computation. In \textbf{NH}, in  But this leads to negligible increase in computation. In \textbf{NH}, in
891  contrast, one additional elliptic equation - a three-dimensional one - must  contrast, one additional elliptic equation - a three-dimensional one - must
# Line 757  Marshall et al, 1997) resulting in a non Line 895  Marshall et al, 1997) resulting in a non
895  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
896    
897  \subsection{Finding the pressure field}  \subsection{Finding the pressure field}
898    \label{sec:finding_the_pressure_field}
899    
900  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
901  pressure field must be obtained diagnostically. We proceed, as before, by  pressure field must be obtained diagnostically. We proceed, as before, by
# Line 771  Hydrostatic pressure is obtained by inte Line 910  Hydrostatic pressure is obtained by inte
910  vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:  vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
911    
912  \begin{equation*}  \begin{equation*}
913  \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%  \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
914  \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr  \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
915  \end{equation*}  \end{equation*}
916  and so  and so
# Line 789  atmospheric pressure pushing down on the Line 928  atmospheric pressure pushing down on the
928    
929  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
930    
931  The surface pressure equation can be obtained by integrating continuity, (%  The surface pressure equation can be obtained by integrating continuity,
932  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
933    
934  \begin{equation*}  \begin{equation*}
935  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
936  }_{h}+\partial _{r}\dot{r}\right) dr=0  }_{h}+\partial _{r}\dot{r}\right) dr=0
937  \end{equation*}  \end{equation*}
938    
# Line 801  Thus: Line 940  Thus:
940    
941  \begin{equation*}  \begin{equation*}
942  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
943  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
944  _{h}dr=0  _{h}dr=0
945  \end{equation*}  \end{equation*}
946  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
947  r $. The above can be rearranged to yield, using Leibnitz's theorem:  r $. The above can be rearranged to yield, using Leibnitz's theorem:
948    
949  \begin{equation}  \begin{equation}
950  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
951  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
952  \label{eq:free-surface}  \label{eq:free-surface}
953  \end{equation}%  \end{equation}
954  where we have incorporated a source term.  where we have incorporated a source term.
955    
956  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
957  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
958  be written  be written
959  \begin{equation}  \begin{equation}
960  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
961  \label{eq:phi-surf}  \label{eq:phi-surf}
962  \end{equation}%  \end{equation}
963  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
964    
965  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
966  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
967  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
968  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
969    
970  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
971    
972  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
973  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
974  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
975    
976  \begin{equation}  \begin{equation}
977  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
978  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
979  \vec{\mathbf{F}}  \label{eq:3d-invert}  \vec{\mathbf{F}}  \label{eq:3d-invert}
980  \end{equation}  \end{equation}
981    
# Line 856  coasts (in the ocean) and the bottom: Line 995  coasts (in the ocean) and the bottom:
995  \end{equation}  \end{equation}
996  where $\widehat{n}$ is a vector of unit length normal to the boundary. The  where $\widehat{n}$ is a vector of unit length normal to the boundary. The
997  kinematic condition (\ref{nonormalflow}) is also applied to the vertical  kinematic condition (\ref{nonormalflow}) is also applied to the vertical
998  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
999  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
1000  tangential component of velocity, $v_{T}$, at all solid boundaries,  tangential component of velocity, $v_{T}$, at all solid boundaries,
1001  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
1002  equations - see below.  equations - see below.
1003    
1004  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1005    
1006  \begin{equation}  \begin{equation}
1007  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 873  where Line 1012  where
1012  \begin{equation*}  \begin{equation*}
1013  \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi  \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
1014  _{s}+\mathbf{\nabla }\phi _{hyd}\right)  _{s}+\mathbf{\nabla }\phi _{hyd}\right)
1015  \end{equation*}%  \end{equation*}
1016  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
1017  (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can  (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
1018  exploit classical 3D potential theory and, by introducing an appropriately  exploit classical 3D potential theory and, by introducing an appropriately
1019  chosen $\delta $-function sheet of `source-charge', replace the  chosen $\delta $-function sheet of `source-charge', replace the
1020  inhomogeneous boundary condition on pressure by a homogeneous one. The  inhomogeneous boundary condition on pressure by a homogeneous one. The
1021  source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $%  source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
1022  \vec{\mathbf{F}}.$ By simultaneously setting $%  \vec{\mathbf{F}}.$ By simultaneously setting $
1023  \begin{array}{l}  \begin{array}{l}
1024  \widehat{n}.\vec{\mathbf{F}}%  \widehat{n}.\vec{\mathbf{F}}
1025  \end{array}%  \end{array}
1026  =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following  =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
1027  self-consistent but simpler homogenized Elliptic problem is obtained:  self-consistent but simpler homogenized Elliptic problem is obtained:
1028    
1029  \begin{equation*}  \begin{equation*}
1030  \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad  \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
1031  \end{equation*}%  \end{equation*}
1032  where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such  where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
1033  that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%  that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
1034  {eq:inhom-neumann-nh}) the modified boundary condition becomes:  {eq:inhom-neumann-nh}) the modified boundary condition becomes:
1035    
1036  \begin{equation}  \begin{equation}
# Line 902  If the flow is `close' to hydrostatic ba Line 1041  If the flow is `close' to hydrostatic ba
1041  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
1042  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1043    
1044  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1045  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1046    
1047  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 910  does not vanish at $r=R_{moving}$, and s Line 1049  does not vanish at $r=R_{moving}$, and s
1049  \subsubsection{Forcing}  \subsubsection{Forcing}
1050    
1051  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1052  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1053    
1054  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1055    
# Line 920  Many forms of momentum dissipation are a Line 1059  Many forms of momentum dissipation are a
1059  biharmonic frictions are commonly used:  biharmonic frictions are commonly used:
1060    
1061  \begin{equation}  \begin{equation}
1062  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1063  +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation}  +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation}
1064  \end{equation}  \end{equation}
1065  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
# Line 931  friction. These coefficients are the sam Line 1070  friction. These coefficients are the sam
1070    
1071  The mixing terms for the temperature and salinity equations have a similar  The mixing terms for the temperature and salinity equations have a similar
1072  form to that of momentum except that the diffusion tensor can be  form to that of momentum except that the diffusion tensor can be
1073  non-diagonal and have varying coefficients. $\qquad $%  non-diagonal and have varying coefficients. $\qquad $
1074  \begin{equation}  \begin{equation}
1075  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1076  _{h}^{4}(T,S)  \label{eq:diffusion}  _{h}^{4}(T,S)  \label{eq:diffusion}
1077  \end{equation}  \end{equation}
1078  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1079  horizontal coefficient for biharmonic diffusion. In the simplest case where  horizontal coefficient for biharmonic diffusion. In the simplest case where
1080  the subgrid-scale fluxes of heat and salt are parameterized with constant  the subgrid-scale fluxes of heat and salt are parameterized with constant
1081  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
# Line 947  reduces to a diagonal matrix with consta Line 1086  reduces to a diagonal matrix with consta
1086  \begin{array}{ccc}  \begin{array}{ccc}
1087  K_{h} & 0 & 0 \\  K_{h} & 0 & 0 \\
1088  0 & K_{h} & 0 \\  0 & K_{h} & 0 \\
1089  0 & 0 & K_{v}%  0 & 0 & K_{v}
1090  \end{array}  \end{array}
1091  \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor}  \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor}
1092  \end{equation}  \end{equation}
# Line 957  salinity ... ). Line 1096  salinity ... ).
1096    
1097  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1098    
1099  For some purposes it is advantageous to write momentum advection in eq(\ref%  For some purposes it is advantageous to write momentum advection in eq(\ref
1100  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1101    
1102  \begin{equation}  \begin{equation}
1103  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1104  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1105  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1106  \label{eq:vi-identity}  \label{eq:vi-identity}
1107  \end{equation}%  \end{equation}
1108  This permits alternative numerical treatments of the non-linear terms based  This permits alternative numerical treatments of the non-linear terms based
1109  on their representation as a vorticity flux. Because gradients of coordinate  on their representation as a vorticity flux. Because gradients of coordinate
1110  vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit  vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1111  representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%  representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1112  {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information  {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1113  about the geometry is contained in the areas and lengths of the volumes used  about the geometry is contained in the areas and lengths of the volumes used
1114  to discretize the model.  to discretize the model.
1115    
1116  \subsection{Adjoint}  \subsection{Adjoint}
1117    
1118  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1119  in Chapter 5.  in Chapter 5.
1120    
1121  % $Header$  % $Header$
# Line 991  coordinates} Line 1130  coordinates}
1130    
1131  The hydrostatic primitive equations (HPEs) in p-coordinates are:  The hydrostatic primitive equations (HPEs) in p-coordinates are:
1132  \begin{eqnarray}  \begin{eqnarray}
1133  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1134  _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1135  \label{eq:atmos-mom} \\  \label{eq:atmos-mom} \\
1136  \frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\  \frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\
1137  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1138  \partial p} &=&0  \label{eq:atmos-cont} \\  \partial p} &=&0  \label{eq:atmos-cont} \\
1139  p\alpha &=&RT  \label{eq:atmos-eos} \\  p\alpha &=&RT  \label{eq:atmos-eos} \\
1140  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}
1141  \end{eqnarray}%  \end{eqnarray}
1142  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1143  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1144  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1145  derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is  derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1146  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1147  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1148  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1149  e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%  e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1150  p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.  p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1151    
1152  It is convenient to cast the heat equation in terms of potential temperature  It is convenient to cast the heat equation in terms of potential temperature
# Line 1015  $\theta $ so that it looks more like a g Line 1154  $\theta $ so that it looks more like a g
1154  Differentiating (\ref{eq:atmos-eos}) we get:  Differentiating (\ref{eq:atmos-eos}) we get:
1155  \begin{equation*}  \begin{equation*}
1156  p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}  p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1157  \end{equation*}%  \end{equation*}
1158  which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%  which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1159  c_{p}=c_{v}+R$, gives:  c_{p}=c_{v}+R$, gives:
1160  \begin{equation}  \begin{equation}
1161  c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}  c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1162  \label{eq-p-heat-interim}  \label{eq-p-heat-interim}
1163  \end{equation}%  \end{equation}
1164  Potential temperature is defined:  Potential temperature is defined:
1165  \begin{equation}  \begin{equation}
1166  \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp}  \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp}
1167  \end{equation}%  \end{equation}
1168  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1169  we will make use of the Exner function $\Pi (p)$ which defined by:  we will make use of the Exner function $\Pi (p)$ which defined by:
1170  \begin{equation}  \begin{equation}
1171  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner}  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner}
1172  \end{equation}%  \end{equation}
1173  The following relations will be useful and are easily expressed in terms of  The following relations will be useful and are easily expressed in terms of
1174  the Exner function:  the Exner function:
1175  \begin{equation*}  \begin{equation*}
1176  c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi  c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1177  }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%  }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1178  \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%  \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1179  \frac{Dp}{Dt}  \frac{Dp}{Dt}
1180  \end{equation*}%  \end{equation*}
1181  where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.  where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1182    
1183  The heat equation is obtained by noting that  The heat equation is obtained by noting that
# Line 1053  and on substituting into (\ref{eq-p-heat Line 1192  and on substituting into (\ref{eq-p-heat
1192  \end{equation}  \end{equation}
1193  which is in conservative form.  which is in conservative form.
1194    
1195  For convenience in the model we prefer to step forward (\ref%  For convenience in the model we prefer to step forward (\ref
1196  {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).  {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1197    
1198  \subsubsection{Boundary conditions}  \subsubsection{Boundary conditions}
# Line 1097  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1236  _{o}(p_{o})=g~Z_{topo}$, defined:
1236    
1237  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1238  \begin{eqnarray}  \begin{eqnarray}
1239  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1240  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1241  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1242  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1243  \partial p} &=&0 \\  \partial p} &=&0 \\
1244  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1245  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1246  \end{eqnarray}  \end{eqnarray}
1247    
1248  % $Header$  % $Header$
# Line 1117  We review here the method by which the s Line 1256  We review here the method by which the s
1256  HPE's for the ocean written in z-coordinates are obtained. The  HPE's for the ocean written in z-coordinates are obtained. The
1257  non-Boussinesq equations for oceanic motion are:  non-Boussinesq equations for oceanic motion are:
1258  \begin{eqnarray}  \begin{eqnarray}
1259  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1260  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1261  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1262  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1263  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1264  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1265  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1266  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1267  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1268  \end{eqnarray}%  \label{eq:non-boussinesq}
1269    \end{eqnarray}
1270  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1271  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1272  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1273  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1274  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1275  {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is  {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1276  therefore necessary to manipulate the system as follows. Differentiating the  therefore necessary to manipulate the system as follows. Differentiating the
1277  EOS (equation of state) gives:  EOS (equation of state) gives:
# Line 1144  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1284  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1284  \end{equation}  \end{equation}
1285    
1286  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1287  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1288  \begin{equation}  \begin{equation}
1289  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1290  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}
1291  \end{equation}  \end{equation}
1292  where we have used an approximation sign to indicate that we have assumed  where we have used an approximation sign to indicate that we have assumed
# Line 1155  adiabatic motion, dropping the $\frac{D\ Line 1294  adiabatic motion, dropping the $\frac{D\
1294  Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that  Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1295  can be explicitly integrated forward:  can be explicitly integrated forward:
1296  \begin{eqnarray}  \begin{eqnarray}
1297  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1298  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1299  \label{eq-cns-hmom} \\  \label{eq-cns-hmom} \\
1300  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1301  &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\  &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\
1302  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1303  v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\  v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\
1304  \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\  \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\
1305  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\
# Line 1174  wherever it appears in a product (ie. no Line 1313  wherever it appears in a product (ie. no
1313  `Boussinesq assumption'. The only term that then retains the full variation  `Boussinesq assumption'. The only term that then retains the full variation
1314  in $\rho $ is the gravitational acceleration:  in $\rho $ is the gravitational acceleration:
1315  \begin{eqnarray}  \begin{eqnarray}
1316  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1317  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1318  \label{eq-zcb-hmom} \\  \label{eq-zcb-hmom} \\
1319  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1320  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1321  \label{eq-zcb-hydro} \\  \label{eq-zcb-hydro} \\
1322  \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%  \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1323  \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\  \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\
1324  \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\  \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\
1325  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\
1326  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt}
1327  \end{eqnarray}  \end{eqnarray}
1328  These equations still retain acoustic modes. But, because the  These equations still retain acoustic modes. But, because the
1329  ``compressible'' terms are linearized, the pressure equation \ref%  ``compressible'' terms are linearized, the pressure equation \ref
1330  {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent  {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1331  term appears as a Helmholtz term in the non-hydrostatic pressure equation).  term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1332  These are the \emph{truly} compressible Boussinesq equations. Note that the  These are the \emph{truly} compressible Boussinesq equations. Note that the
1333  EOS must have the same pressure dependency as the linearized pressure term,  EOS must have the same pressure dependency as the linearized pressure term,
1334  ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%  ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1335  c_{s}^{2}}$, for consistency.  c_{s}^{2}}$, for consistency.
1336    
1337  \subsubsection{`Anelastic' z-coordinate equations}  \subsubsection{`Anelastic' z-coordinate equations}
1338    
1339  The anelastic approximation filters the acoustic mode by removing the  The anelastic approximation filters the acoustic mode by removing the
1340  time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%  time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1341  ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%  ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1342  \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between  \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1343  continuity and EOS. A better solution is to change the dependency on  continuity and EOS. A better solution is to change the dependency on
1344  pressure in the EOS by splitting the pressure into a reference function of  pressure in the EOS by splitting the pressure into a reference function of
# Line 1210  height and a perturbation: Line 1349  height and a perturbation:
1349  Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from  Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1350  differentiating the EOS, the continuity equation then becomes:  differentiating the EOS, the continuity equation then becomes:
1351  \begin{equation*}  \begin{equation*}
1352  \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%  \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1353  Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%  Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1354  \frac{\partial w}{\partial z}=0  \frac{\partial w}{\partial z}=0
1355  \end{equation*}  \end{equation*}
1356  If the time- and space-scales of the motions of interest are longer than  If the time- and space-scales of the motions of interest are longer than
1357  those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%  those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1358  \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and  \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1359  $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%  $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1360  Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta  Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1361  ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon  ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1362  _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation  _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1363  and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the  and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1364  anelastic continuity equation:  anelastic continuity equation:
1365  \begin{equation}  \begin{equation}
1366  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1367  \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1}  \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1}
1368  \end{equation}  \end{equation}
1369  A slightly different route leads to the quasi-Boussinesq continuity equation  A slightly different route leads to the quasi-Boussinesq continuity equation
1370  where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%  where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1371  \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%  \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1372  _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:  _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1373  \begin{equation}  \begin{equation}
1374  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1375  \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2}  \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2}
1376  \end{equation}  \end{equation}
1377  Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same  Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
# Line 1241  equation if: Line 1380  equation if:
1380  \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}  \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1381  \end{equation}  \end{equation}
1382  Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$  Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1383  and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%  and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1384  g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The  g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1385  full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are  full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1386  then:  then:
1387  \begin{eqnarray}  \begin{eqnarray}
1388  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1389  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1390  \label{eq-zab-hmom} \\  \label{eq-zab-hmom} \\
1391  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1392  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1393  \label{eq-zab-hydro} \\  \label{eq-zab-hydro} \\
1394  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1395  \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\  \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\
1396  \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\  \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\
1397  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\
# Line 1265  Here, the objective is to drop the depth Line 1404  Here, the objective is to drop the depth
1404  technically, to also remove the dependence of $\rho $ on $p_{o}$. This would  technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1405  yield the ``truly'' incompressible Boussinesq equations:  yield the ``truly'' incompressible Boussinesq equations:
1406  \begin{eqnarray}  \begin{eqnarray}
1407  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1408  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1409  \label{eq-ztb-hmom} \\  \label{eq-ztb-hmom} \\
1410  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1411  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1412  \label{eq-ztb-hydro} \\  \label{eq-ztb-hydro} \\
1413  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
# Line 1287  retain compressibility effects in the de Line 1426  retain compressibility effects in the de
1426  density thus:  density thus:
1427  \begin{equation*}  \begin{equation*}
1428  \rho =\rho _{o}+\rho ^{\prime }  \rho =\rho _{o}+\rho ^{\prime }
1429  \end{equation*}%  \end{equation*}
1430  We then assert that variations with depth of $\rho _{o}$ are unimportant  We then assert that variations with depth of $\rho _{o}$ are unimportant
1431  while the compressible effects in $\rho ^{\prime }$ are:  while the compressible effects in $\rho ^{\prime }$ are:
1432  \begin{equation*}  \begin{equation*}
1433  \rho _{o}=\rho _{c}  \rho _{o}=\rho _{c}
1434  \end{equation*}%  \end{equation*}
1435  \begin{equation*}  \begin{equation*}
1436  \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}  \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1437  \end{equation*}%  \end{equation*}
1438  This then yields what we can call the semi-compressible Boussinesq  This then yields what we can call the semi-compressible Boussinesq
1439  equations:  equations:
1440  \begin{eqnarray}  \begin{eqnarray}
1441  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1442  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1443  \mathcal{F}}}  \label{eq:ocean-mom} \\  \mathcal{F}}}  \label{eq:ocean-mom} \\
1444  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1445  _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
# Line 1311  _{c}}\frac{\partial p^{\prime }}{\partia Line 1450  _{c}}\frac{\partial p^{\prime }}{\partia
1450  \\  \\
1451  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\
1452  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt}
1453  \end{eqnarray}%  \end{eqnarray}
1454  Note that the hydrostatic pressure of the resting fluid, including that  Note that the hydrostatic pressure of the resting fluid, including that
1455  associated with $\rho _{c}$, is subtracted out since it has no effect on the  associated with $\rho _{c}$, is subtracted out since it has no effect on the
1456  dynamics.  dynamics.
# Line 1335  In spherical coordinates, the velocity c Line 1474  In spherical coordinates, the velocity c
1474  and vertical direction respectively, are given by (see Fig.2) :  and vertical direction respectively, are given by (see Fig.2) :
1475    
1476  \begin{equation*}  \begin{equation*}
1477  u=r\cos \phi \frac{D\lambda }{Dt}  u=r\cos \varphi \frac{D\lambda }{Dt}
1478  \end{equation*}  \end{equation*}
1479    
1480  \begin{equation*}  \begin{equation*}
1481  v=r\frac{D\phi }{Dt}\qquad  v=r\frac{D\varphi }{Dt}\qquad
1482  \end{equation*}  \end{equation*}
1483  $\qquad \qquad \qquad \qquad $  $\qquad \qquad \qquad \qquad $
1484    
# Line 1347  $\qquad \qquad \qquad \qquad $ Line 1486  $\qquad \qquad \qquad \qquad $
1486  \dot{r}=\frac{Dr}{Dt}  \dot{r}=\frac{Dr}{Dt}
1487  \end{equation*}  \end{equation*}
1488    
1489  Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial  Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1490  distance of the particle from the center of the earth, $\Omega $ is the  distance of the particle from the center of the earth, $\Omega $ is the
1491  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1492    
# Line 1355  The `grad' ($\nabla $) and `div' ($\nabl Line 1494  The `grad' ($\nabla $) and `div' ($\nabl
1494  spherical coordinates:  spherical coordinates:
1495    
1496  \begin{equation*}  \begin{equation*}
1497  \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%  \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1498  ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%  ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1499  \right)  \right)
1500  \end{equation*}  \end{equation*}
1501    
1502  \begin{equation*}  \begin{equation*}
1503  \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial  \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1504  \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1505  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1506  \end{equation*}  \end{equation*}
1507    
1508  %%%% \end{document}  %tci%\end{document}

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.18

  ViewVC Help
Powered by ViewVC 1.1.22