/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.18 by afe, Tue Mar 23 15:29:39 2004 UTC revision 1.19 by afe, Tue Mar 23 16:47:04 2004 UTC
# Line 49  also presented. Line 49  also presented.
49    
50  \section{Introduction}  \section{Introduction}
51  \begin{rawhtml}  \begin{rawhtml}
52  <!-- CMIREDIR:innovations -->  <!-- CMIREDIR:innovations: -->
53  \end{rawhtml}  \end{rawhtml}
54    
55    
# Line 155  described in detail in the documentation Line 155  described in detail in the documentation
155    
156  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
157  \begin{rawhtml}  \begin{rawhtml}
158  <!-- CMIREDIR:atmospheric_example -->  <!-- CMIREDIR:atmospheric_example: -->
159  \end{rawhtml}  \end{rawhtml}
160    
161    
# Line 196  latitude-longitude grid. Both grids are Line 196  latitude-longitude grid. Both grids are
196    
197  \subsection{Ocean gyres}  \subsection{Ocean gyres}
198  \begin{rawhtml}  \begin{rawhtml}
199  <!-- CMIREDIR:oceanic_example -->  <!-- CMIREDIR:oceanic_example: -->
200  \end{rawhtml}  \end{rawhtml}
201  \begin{rawhtml}  \begin{rawhtml}
202  <!-- CMIREDIR:ocean_gyres -->  <!-- CMIREDIR:ocean_gyres: -->
203  \end{rawhtml}  \end{rawhtml}
204    
205  Baroclinic instability is a ubiquitous process in the ocean, as well as the  Baroclinic instability is a ubiquitous process in the ocean, as well as the
# Line 228  visible. Line 228  visible.
228    
229  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
230  \begin{rawhtml}  \begin{rawhtml}
231  <!-- CMIREDIR:global_ocean_circulation -->  <!-- CMIREDIR:global_ocean_circulation: -->
232  \end{rawhtml}  \end{rawhtml}
233    
234  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
# Line 249  circulation of the global ocean in Sverd Line 249  circulation of the global ocean in Sverd
249    
250  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
251  \begin{rawhtml}  \begin{rawhtml}
252  <!-- CMIREDIR:mixing_over_topography -->  <!-- CMIREDIR:mixing_over_topography: -->
253  \end{rawhtml}  \end{rawhtml}
254    
255    
# Line 272  instability of the along-slope current. Line 272  instability of the along-slope current.
272    
273  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
274  \begin{rawhtml}  \begin{rawhtml}
275  <!-- CMIREDIR:boundary_forced_internal_waves -->  <!-- CMIREDIR:boundary_forced_internal_waves: -->
276  \end{rawhtml}  \end{rawhtml}
277    
278  The unique ability of MITgcm to treat non-hydrostatic dynamics in the  The unique ability of MITgcm to treat non-hydrostatic dynamics in the
# Line 294  nonhydrostatic dynamics. Line 294  nonhydrostatic dynamics.
294    
295  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
296  \begin{rawhtml}  \begin{rawhtml}
297  <!-- CMIREDIR:parameter_sensitivity -->  <!-- CMIREDIR:parameter_sensitivity: -->
298  \end{rawhtml}  \end{rawhtml}
299    
300  Forward and tangent linear counterparts of MITgcm are supported using an  Forward and tangent linear counterparts of MITgcm are supported using an
# Line 317  yields sensitivities to all other model Line 317  yields sensitivities to all other model
317    
318  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
319  \begin{rawhtml}  \begin{rawhtml}
320  <!-- CMIREDIR:global_state_estimation -->  <!-- CMIREDIR:global_state_estimation: -->
321  \end{rawhtml}  \end{rawhtml}
322    
323    
# Line 338  consistency with altimetric and in-situ Line 338  consistency with altimetric and in-situ
338    
339  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
340  \begin{rawhtml}  \begin{rawhtml}
341  <!-- CMIREDIR:ocean_biogeo_cycles -->  <!-- CMIREDIR:ocean_biogeo_cycles: -->
342  \end{rawhtml}  \end{rawhtml}
343    
344  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the ocean. For
# Line 356  telescoping to $\frac{1}{3}^{\circ}\time Line 356  telescoping to $\frac{1}{3}^{\circ}\time
356    
357  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
358  \begin{rawhtml}  \begin{rawhtml}
359  <!-- CMIREDIR:classroom_exp -->  <!-- CMIREDIR:classroom_exp: -->
360  \end{rawhtml}  \end{rawhtml}
361    
362  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
# Line 377  stratification of the ACC. Line 377  stratification of the ACC.
377    
378  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
379  \begin{rawhtml}  \begin{rawhtml}
380  <!-- CMIREDIR:z-p_isomorphism -->  <!-- CMIREDIR:z-p_isomorphism: -->
381  \end{rawhtml}  \end{rawhtml}
382    
383  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
# Line 656  which, for convenience, are written out Line 656  which, for convenience, are written out
656  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
657  Non-hydrostatic forms}  Non-hydrostatic forms}
658  \begin{rawhtml}  \begin{rawhtml}
659  <!-- CMIREDIR:non_hydrostatic -->  <!-- CMIREDIR:non_hydrostatic: -->
660  \end{rawhtml}  \end{rawhtml}
661    
662    

Legend:
Removed from v.1.18  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22