/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by edhill, Thu Aug 7 18:27:51 2003 UTC revision 1.18 by afe, Tue Mar 23 15:29:39 2004 UTC
# Line 48  both process and general circulation stu Line 48  both process and general circulation stu
48  also presented.  also presented.
49    
50  \section{Introduction}  \section{Introduction}
51    \begin{rawhtml}
52    <!-- CMIREDIR:innovations -->
53    \end{rawhtml}
54    
55    
56  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
57    
# Line 150  running Linux, together with a FORTRAN\ Line 154  running Linux, together with a FORTRAN\
154  described in detail in the documentation.  described in detail in the documentation.
155    
156  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
157    \begin{rawhtml}
158    <!-- CMIREDIR:atmospheric_example -->
159    \end{rawhtml}
160    
161    
162    
163  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
164  both atmospheric and oceanographic flows at both small and large scales.  both atmospheric and oceanographic flows at both small and large scales.
# Line 186  latitude-longitude grid. Both grids are Line 195  latitude-longitude grid. Both grids are
195  %% CNHend  %% CNHend
196    
197  \subsection{Ocean gyres}  \subsection{Ocean gyres}
198    \begin{rawhtml}
199    <!-- CMIREDIR:oceanic_example -->
200    \end{rawhtml}
201    \begin{rawhtml}
202    <!-- CMIREDIR:ocean_gyres -->
203    \end{rawhtml}
204    
205  Baroclinic instability is a ubiquitous process in the ocean, as well as the  Baroclinic instability is a ubiquitous process in the ocean, as well as the
206  atmosphere. Ocean eddies play an important role in modifying the  atmosphere. Ocean eddies play an important role in modifying the
# Line 212  visible. Line 227  visible.
227    
228    
229  \subsection{Global ocean circulation}  \subsection{Global ocean circulation}
230    \begin{rawhtml}
231    <!-- CMIREDIR:global_ocean_circulation -->
232    \end{rawhtml}
233    
234  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
235  the surface of a 4$^{\circ }$  the surface of a 4$^{\circ }$
# Line 230  circulation of the global ocean in Sverd Line 248  circulation of the global ocean in Sverd
248  %%CNHend  %%CNHend
249    
250  \subsection{Convection and mixing over topography}  \subsection{Convection and mixing over topography}
251    \begin{rawhtml}
252    <!-- CMIREDIR:mixing_over_topography -->
253    \end{rawhtml}
254    
255    
256  Dense plumes generated by localized cooling on the continental shelf of the  Dense plumes generated by localized cooling on the continental shelf of the
257  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
# Line 249  instability of the along-slope current. Line 271  instability of the along-slope current.
271  %%CNHend  %%CNHend
272    
273  \subsection{Boundary forced internal waves}  \subsection{Boundary forced internal waves}
274    \begin{rawhtml}
275    <!-- CMIREDIR:boundary_forced_internal_waves -->
276    \end{rawhtml}
277    
278  The unique ability of MITgcm to treat non-hydrostatic dynamics in the  The unique ability of MITgcm to treat non-hydrostatic dynamics in the
279  presence of complex geometry makes it an ideal tool to study internal wave  presence of complex geometry makes it an ideal tool to study internal wave
# Line 268  nonhydrostatic dynamics. Line 293  nonhydrostatic dynamics.
293  %%CNHend  %%CNHend
294    
295  \subsection{Parameter sensitivity using the adjoint of MITgcm}  \subsection{Parameter sensitivity using the adjoint of MITgcm}
296    \begin{rawhtml}
297    <!-- CMIREDIR:parameter_sensitivity -->
298    \end{rawhtml}
299    
300  Forward and tangent linear counterparts of MITgcm are supported using an  Forward and tangent linear counterparts of MITgcm are supported using an
301  `automatic adjoint compiler'. These can be used in parameter sensitivity and  `automatic adjoint compiler'. These can be used in parameter sensitivity and
# Line 288  yields sensitivities to all other model Line 316  yields sensitivities to all other model
316  %%CNHend  %%CNHend
317    
318  \subsection{Global state estimation of the ocean}  \subsection{Global state estimation of the ocean}
319    \begin{rawhtml}
320    <!-- CMIREDIR:global_state_estimation -->
321    \end{rawhtml}
322    
323    
324  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
325  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
# Line 305  consistency with altimetric and in-situ Line 337  consistency with altimetric and in-situ
337  %% CNHend  %% CNHend
338    
339  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
340    \begin{rawhtml}
341    <!-- CMIREDIR:ocean_biogeo_cycles -->
342    \end{rawhtml}
343    
344  MITgcm is being used to study global biogeochemical cycles in the ocean. For  MITgcm is being used to study global biogeochemical cycles in the ocean. For
345  example one can study the effects of interannual changes in meteorological  example one can study the effects of interannual changes in meteorological
# Line 320  telescoping to $\frac{1}{3}^{\circ}\time Line 355  telescoping to $\frac{1}{3}^{\circ}\time
355  %%CNHend  %%CNHend
356    
357  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
358    \begin{rawhtml}
359    <!-- CMIREDIR:classroom_exp -->
360    \end{rawhtml}
361    
362  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
363  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
# Line 338  stratification of the ACC. Line 376  stratification of the ACC.
376  % $Name$  % $Name$
377    
378  \section{Continuous equations in `r' coordinates}  \section{Continuous equations in `r' coordinates}
379    \begin{rawhtml}
380    <!-- CMIREDIR:z-p_isomorphism -->
381    \end{rawhtml}
382    
383  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
384  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
# Line 614  which, for convenience, are written out Line 655  which, for convenience, are written out
655    
656  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and  \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
657  Non-hydrostatic forms}  Non-hydrostatic forms}
658    \begin{rawhtml}
659    <!-- CMIREDIR:non_hydrostatic -->
660    \end{rawhtml}
661    
662    
663  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:  Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
664    

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.18

  ViewVC Help
Powered by ViewVC 1.1.22