/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by cnh, Thu Oct 25 12:06:56 2001 UTC revision 1.16 by cnh, Thu Feb 28 19:32:19 2002 UTC
# Line 37  Line 37 
37  % $Header$  % $Header$
38  % $Name$  % $Name$
39    
40  \section{Introduction}  This document provides the reader with the information necessary to
   
 This documentation provides the reader with the information necessary to  
41  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
42  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
43  numerical algorithms the model employs and a description of the associated  numerical algorithms the model employs and a description of the associated
# Line 49  are available. A number of examples illu Line 47  are available. A number of examples illu
47  both process and general circulation studies of the atmosphere and ocean are  both process and general circulation studies of the atmosphere and ocean are
48  also presented.  also presented.
49    
50    \section{Introduction}
51    
52  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
53    
54  \begin{itemize}  \begin{itemize}
# Line 84  computational platforms. Line 84  computational platforms.
84  \end{itemize}  \end{itemize}
85    
86  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
87  listed in an Appendix.  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}:
88    
89    \begin{verbatim}
90    Hill, C. and J. Marshall, (1995)
91    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92    Parallel Computational Fluid Dynamics
93    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94    and Results Using Parallel Computers, 545-552.
95    Elsevier Science B.V.: New York
96    
97    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
99    J. Geophysical Res., 102(C3), 5733-5752.
100    
101    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102    A finite-volume, incompressible Navier Stokes model for studies of the ocean
103    on parallel computers,
104    J. Geophysical Res., 102(C3), 5753-5766.
105    
106    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107    Representation of topography by shaved cells in a height coordinate ocean
108    model
109    Mon Wea Rev, vol 125, 2293-2315
110    
111    Marshall, J., Jones, H. and C. Hill, (1998)
112    Efficient ocean modeling using non-hydrostatic algorithms
113    Journal of Marine Systems, 18, 115-134
114    
115    Adcroft, A., Hill C. and J. Marshall: (1999)
116    A new treatment of the Coriolis terms in C-grid models at both high and low
117    resolutions,
118    Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121    A Strategy for Terascale Climate Modeling.
122    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123    in Meteorology, pages 406-425
124    World Scientific Publishing Co: UK
125    
126    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127    Construction of the adjoint MIT ocean general circulation model and
128    application to Atlantic heat transport variability
129    J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131    \end{verbatim}
132    
133  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
134  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
# Line 102  of them here. A more detailed descriptio Line 146  of them here. A more detailed descriptio
146  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
147  given later. Indeed many of the illustrative examples shown below can be  given later. Indeed many of the illustrative examples shown below can be
148  easily reproduced: simply download the model (the minimum you need is a PC  easily reproduced: simply download the model (the minimum you need is a PC
149  running linux, together with a FORTRAN\ 77 compiler) and follow the examples  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
150  described in detail in the documentation.  described in detail in the documentation.
151    
152  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
# Line 126  there are no mountains or land-sea contr Line 170  there are no mountains or land-sea contr
170  %% CNHend  %% CNHend
171    
172  As described in Adcroft (2001), a `cubed sphere' is used to discretize the  As described in Adcroft (2001), a `cubed sphere' is used to discretize the
173  globe permitting a uniform gridding and obviated the need to Fourier filter.  globe permitting a uniform griding and obviated the need to Fourier filter.
174  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear  The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
175  grid, of which the cubed sphere is just one of many choices.  grid, of which the cubed sphere is just one of many choices.
176    
# Line 163  warm water northward by the mean flow of Line 207  warm water northward by the mean flow of
207  visible.  visible.
208    
209  %% CNHbegin  %% CNHbegin
210  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
211  %% CNHend  %% CNHend
212    
213    
# Line 191  Dense plumes generated by localized cool Line 235  Dense plumes generated by localized cool
235  ocean may be influenced by rotation when the deformation radius is smaller  ocean may be influenced by rotation when the deformation radius is smaller
236  than the width of the cooling region. Rather than gravity plumes, the  than the width of the cooling region. Rather than gravity plumes, the
237  mechanism for moving dense fluid down the shelf is then through geostrophic  mechanism for moving dense fluid down the shelf is then through geostrophic
238  eddies. The simulation shown in the figure \ref{fig::convect-and-topo}  eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
239  (blue is cold dense fluid, red is  (blue is cold dense fluid, red is
240  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to  warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
241  trigger convection by surface cooling. The cold, dense water falls down the  trigger convection by surface cooling. The cold, dense water falls down the
# Line 231  data assimilation studies. Line 275  data assimilation studies.
275    
276  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}  As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
277  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude  maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
278  of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}  of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
279  at 60$^{\circ }$N and $  at 60$^{\circ }$N and $
280  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over  \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
281  a 100 year period. We see that $J$ is  a 100 year period. We see that $J$ is
# Line 248  yields sensitivities to all other model Line 292  yields sensitivities to all other model
292  An important application of MITgcm is in state estimation of the global  An important application of MITgcm is in state estimation of the global
293  ocean circulation. An appropriately defined `cost function', which measures  ocean circulation. An appropriately defined `cost function', which measures
294  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
295  insitu) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
296  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
297  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
298  surface elevation of the ocean obtained by bringing the model in to  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
299    Both are obtained from assimilation bringing the model in to
300  consistency with altimetric and in-situ observations over the period  consistency with altimetric and in-situ observations over the period
301  1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}  1992-1997.
302    
303  %% CNHbegin  %% CNHbegin
304  \input{part1/globes_figure}  \input{part1/assim_figure}
305  %% CNHend  %% CNHend
306    
307  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}
# Line 277  telescoping to $\frac{1}{3}^{\circ}\time Line 322  telescoping to $\frac{1}{3}^{\circ}\time
322  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
323    
324  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
325  laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
326  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
327  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
328  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
# Line 326  see figure \ref{fig:zandp-vert-coord}. Line 371  see figure \ref{fig:zandp-vert-coord}.
371  \begin{equation*}  \begin{equation*}
372  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
373  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
374  \text{ horizontal mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
375  \end{equation*}  \end{equation*}
376    
377  \begin{equation*}  \begin{equation}
378  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
379  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
380  vertical mtm}  vertical mtm} \label{eq:vertical_mtm}
381  \end{equation*}  \end{equation}
382    
383  \begin{equation}  \begin{equation}
384  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
385  \partial r}=0\text{ continuity}  \label{eq:continuous}  \partial r}=0\text{ continuity}  \label{eq:continuity}
386  \end{equation}  \end{equation}
387    
388  \begin{equation*}  \begin{equation}
389  b=b(\theta ,S,r)\text{ equation of state}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
390  \end{equation*}  \end{equation}
391    
392  \begin{equation*}  \begin{equation}
393  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
394  \end{equation*}  \label{eq:potential_temperature}
395    \end{equation}
396    
397  \begin{equation*}  \begin{equation}
398  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
399  \end{equation*}  \label{eq:humidity_salt}
400    \end{equation}
401    
402  Here:  Here:
403    
# Line 430  at fixed and moving $r$ surfaces we set Line 477  at fixed and moving $r$ surfaces we set
477    
478  \begin{equation}  \begin{equation}
479  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
480  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
481  \end{equation}  \end{equation}
482    
483  Here  Here
# Line 523  The boundary conditions at top and botto Line 570  The boundary conditions at top and botto
570  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
571  \end{eqnarray}  \end{eqnarray}
572    
573  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
574  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
575  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
576    
577  \subsection{Ocean}  \subsection{Ocean}
# Line 560  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo Line 607  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{mo
607  \end{eqnarray}  \end{eqnarray}
608  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
609    
610  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
611    of oceanic equations
612  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
613  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
614    
# Line 573  Let us separate $\phi $ in to surface, h Line 621  Let us separate $\phi $ in to surface, h
621  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
622  \label{eq:phi-split}  \label{eq:phi-split}
623  \end{equation}  \end{equation}
624  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
625    
626  \begin{equation}  \begin{equation}
627  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 666  In the above `${r}$' is the distance fro Line 714  In the above `${r}$' is the distance fro
714    
715  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
716  OPERATORS.  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
717    
718  %%CNHbegin  %%CNHbegin
719  \input{part1/sphere_coord_figure.tex}  \input{part1/sphere_coord_figure.tex}
# Line 730  In the non-hydrostatic ocean model all t Line 776  In the non-hydrostatic ocean model all t
776  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
777  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
778  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
779  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
780  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
781  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
782  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 779  coordinates are supported - see eqs(\ref Line 825  coordinates are supported - see eqs(\ref
825  \subsection{Solution strategy}  \subsection{Solution strategy}
826    
827  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
828  NH} models is summarized in Fig.7.  NH} models is summarized in Figure \ref{fig:solution-strategy}.
829  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
830  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
831  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
832  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 838  atmospheric pressure pushing down on the Line 883  atmospheric pressure pushing down on the
883    
884  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
885    
886  The surface pressure equation can be obtained by integrating continuity, (  The surface pressure equation can be obtained by integrating continuity,
887  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
888    
889  \begin{equation*}  \begin{equation*}
890  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
# Line 864  r $. The above can be rearranged to yiel Line 909  r $. The above can be rearranged to yiel
909  where we have incorporated a source term.  where we have incorporated a source term.
910    
911  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
912  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
913  be written  be written
914  \begin{equation}  \begin{equation}
915  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
# Line 872  be written Line 917  be written
917  \end{equation}  \end{equation}
918  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
919    
920  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
921  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
922  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
923  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
924    
925  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
926    
927  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
928  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
929  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
930    
931  \begin{equation}  \begin{equation}
932  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
# Line 911  tangential component of velocity, $v_{T} Line 956  tangential component of velocity, $v_{T}
956  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
957  equations - see below.  equations - see below.
958    
959  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
960    
961  \begin{equation}  \begin{equation}
962  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 951  If the flow is `close' to hydrostatic ba Line 996  If the flow is `close' to hydrostatic ba
996  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
997  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
998    
999  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1000  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1001    
1002  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 959  does not vanish at $r=R_{moving}$, and s Line 1004  does not vanish at $r=R_{moving}$, and s
1004  \subsubsection{Forcing}  \subsubsection{Forcing}
1005    
1006  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1007  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1008    
1009  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1010    
# Line 1007  salinity ... ). Line 1052  salinity ... ).
1052  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1053    
1054  For some purposes it is advantageous to write momentum advection in eq(\ref  For some purposes it is advantageous to write momentum advection in eq(\ref
1055  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1056    
1057  \begin{equation}  \begin{equation}
1058  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
# Line 1025  to discretize the model. Line 1070  to discretize the model.
1070    
1071  \subsection{Adjoint}  \subsection{Adjoint}
1072    
1073  Tangent linear and adjoint counterparts of the forward model and described  Tangent linear and adjoint counterparts of the forward model are described
1074  in Chapter 5.  in Chapter 5.
1075    
1076  % $Header$  % $Header$
# Line 1147  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1192  _{o}(p_{o})=g~Z_{topo}$, defined:
1192  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1193  \begin{eqnarray}  \begin{eqnarray}
1194  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1195  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1196  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1197  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1198  \partial p} &=&0 \\  \partial p} &=&0 \\
1199  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1200  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1201  \end{eqnarray}  \end{eqnarray}
1202    
1203  % $Header$  % $Header$
# Line 1171  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z} Line 1216  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}
1216  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1217  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1218  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1219  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1220  \rho &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1221  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1222  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1223    \label{eq:non-boussinesq}
1224  \end{eqnarray}  \end{eqnarray}
1225  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1226  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1227  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1228  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1229  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
# Line 1193  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1239  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1239  \end{equation}  \end{equation}
1240    
1241  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1242  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1243  \begin{equation}  \begin{equation}
1244  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1245  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22