/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by cnh, Thu Feb 28 19:32:19 2002 UTC revision 1.17 by edhill, Thu Aug 7 18:27:51 2003 UTC
# Line 322  telescoping to $\frac{1}{3}^{\circ}\time Line 322  telescoping to $\frac{1}{3}^{\circ}\time
322  \subsection{Simulations of laboratory experiments}  \subsection{Simulations of laboratory experiments}
323    
324  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
325  laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An  laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
326  initially homogeneous tank of water ($1m$ in diameter) is driven from its  initially homogeneous tank of water ($1m$ in diameter) is driven from its
327  free surface by a rotating heated disk. The combined action of mechanical  free surface by a rotating heated disk. The combined action of mechanical
328  and thermal forcing creates a lens of fluid which becomes baroclinically  and thermal forcing creates a lens of fluid which becomes baroclinically
# Line 346  One system of hydrodynamical equations i Line 346  One system of hydrodynamical equations i
346  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
347  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
348  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
349  modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})  modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
350  and height, $z$, if we are modeling the ocean (right hand side of figure  and height, $z$, if we are modeling the ocean (left hand side of figure
351  \ref{fig:isomorphic-equations}).  \ref{fig:isomorphic-equations}).
352    
353  %%CNHbegin  %%CNHbegin
# Line 471  in later chapters. Line 471  in later chapters.
471  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
472    
473  \begin{equation}  \begin{equation}
474  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
475  \label{eq:fixedbc}  \label{eq:fixedbc}
476  \end{equation}  \end{equation}
477    
478  \begin{equation}  \begin{equation}
479  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
480  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
481  \end{equation}  \end{equation}
482    

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22