83 |
computational platforms. |
computational platforms. |
84 |
\end{itemize} |
\end{itemize} |
85 |
|
|
86 |
Key publications reporting on and charting the development of the model are |
Key publications reporting on and charting the development of the model are: |
87 |
listed in an Appendix. |
|
88 |
|
\begin{verbatim} |
89 |
|
|
90 |
|
Hill, C. and J. Marshall, (1995) |
91 |
|
Application of a Parallel Navier-Stokes Model to Ocean Circulation in |
92 |
|
Parallel Computational Fluid Dynamics |
93 |
|
In Proceedings of Parallel Computational Fluid Dynamics: Implementations |
94 |
|
and Results Using Parallel Computers, 545-552. |
95 |
|
Elsevier Science B.V.: New York |
96 |
|
|
97 |
|
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) |
98 |
|
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, |
99 |
|
J. Geophysical Res., 102(C3), 5733-5752. |
100 |
|
|
101 |
|
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) |
102 |
|
A finite-volume, incompressible Navier Stokes model for studies of the ocean |
103 |
|
on parallel computers, |
104 |
|
J. Geophysical Res., 102(C3), 5753-5766. |
105 |
|
|
106 |
|
Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) |
107 |
|
Representation of topography by shaved cells in a height coordinate ocean |
108 |
|
model |
109 |
|
Mon Wea Rev, vol 125, 2293-2315 |
110 |
|
|
111 |
|
Marshall, J., Jones, H. and C. Hill, (1998) |
112 |
|
Efficient ocean modeling using non-hydrostatic algorithms |
113 |
|
Journal of Marine Systems, 18, 115-134 |
114 |
|
|
115 |
|
Adcroft, A., Hill C. and J. Marshall: (1999) |
116 |
|
A new treatment of the Coriolis terms in C-grid models at both high and low |
117 |
|
resolutions, |
118 |
|
Mon. Wea. Rev. Vol 127, pages 1928-1936 |
119 |
|
|
120 |
|
Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) |
121 |
|
A Strategy for Terascale Climate Modeling. |
122 |
|
In Proceedings of the Eight ECMWF Workshop on the Use of Parallel Processors |
123 |
|
in Meteorology |
124 |
|
|
125 |
|
Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) |
126 |
|
Construction of the adjoint MIT ocean general circulation model and |
127 |
|
application to Atlantic heat transport variability |
128 |
|
J. Geophysical Res., 104(C12), 29,529-29,547. |
129 |
|
|
130 |
|
|
131 |
|
\end{verbatim} |
132 |
|
|
133 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
134 |
give a feel for the wide range of problems that can be addressed using it. |
give a feel for the wide range of problems that can be addressed using it. |