/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by cnh, Tue Nov 13 20:35:51 2001 UTC revision 1.16 by cnh, Thu Feb 28 19:32:19 2002 UTC
# Line 37  Line 37 
37  % $Header$  % $Header$
38  % $Name$  % $Name$
39    
40  \section{Introduction}  This document provides the reader with the information necessary to
   
 This documentation provides the reader with the information necessary to  
41  carry out numerical experiments using MITgcm. It gives a comprehensive  carry out numerical experiments using MITgcm. It gives a comprehensive
42  description of the continuous equations on which the model is based, the  description of the continuous equations on which the model is based, the
43  numerical algorithms the model employs and a description of the associated  numerical algorithms the model employs and a description of the associated
# Line 49  are available. A number of examples illu Line 47  are available. A number of examples illu
47  both process and general circulation studies of the atmosphere and ocean are  both process and general circulation studies of the atmosphere and ocean are
48  also presented.  also presented.
49    
50    \section{Introduction}
51    
52  MITgcm has a number of novel aspects:  MITgcm has a number of novel aspects:
53    
54  \begin{itemize}  \begin{itemize}
# Line 84  computational platforms. Line 84  computational platforms.
84  \end{itemize}  \end{itemize}
85    
86  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are
87  listed in an Appendix.  \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}:
88    
89    \begin{verbatim}
90    Hill, C. and J. Marshall, (1995)
91    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92    Parallel Computational Fluid Dynamics
93    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94    and Results Using Parallel Computers, 545-552.
95    Elsevier Science B.V.: New York
96    
97    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
99    J. Geophysical Res., 102(C3), 5733-5752.
100    
101    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102    A finite-volume, incompressible Navier Stokes model for studies of the ocean
103    on parallel computers,
104    J. Geophysical Res., 102(C3), 5753-5766.
105    
106    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107    Representation of topography by shaved cells in a height coordinate ocean
108    model
109    Mon Wea Rev, vol 125, 2293-2315
110    
111    Marshall, J., Jones, H. and C. Hill, (1998)
112    Efficient ocean modeling using non-hydrostatic algorithms
113    Journal of Marine Systems, 18, 115-134
114    
115    Adcroft, A., Hill C. and J. Marshall: (1999)
116    A new treatment of the Coriolis terms in C-grid models at both high and low
117    resolutions,
118    Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121    A Strategy for Terascale Climate Modeling.
122    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123    in Meteorology, pages 406-425
124    World Scientific Publishing Co: UK
125    
126    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127    Construction of the adjoint MIT ocean general circulation model and
128    application to Atlantic heat transport variability
129    J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131    \end{verbatim}
132    
133  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
134  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
# Line 163  warm water northward by the mean flow of Line 207  warm water northward by the mean flow of
207  visible.  visible.
208    
209  %% CNHbegin  %% CNHbegin
210  \input{part1/ocean_gyres_figure}  \input{part1/atl6_figure}
211  %% CNHend  %% CNHend
212    
213    
# Line 250  ocean circulation. An appropriately defi Line 294  ocean circulation. An appropriately defi
294  the departure of the model from observations (both remotely sensed and  the departure of the model from observations (both remotely sensed and
295  in-situ) over an interval of time, is minimized by adjusting `control  in-situ) over an interval of time, is minimized by adjusting `control
296  parameters' such as air-sea fluxes, the wind field, the initial conditions  parameters' such as air-sea fluxes, the wind field, the initial conditions
297  etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean  etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
298  surface elevation of the ocean obtained by bringing the model in to  circulation and a Hopf-Muller plot of Equatorial sea-surface height.
299    Both are obtained from assimilation bringing the model in to
300  consistency with altimetric and in-situ observations over the period  consistency with altimetric and in-situ observations over the period
301  1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF}  1992-1997.
302    
303  %% CNHbegin  %% CNHbegin
304  \input{part1/globes_figure}  \input{part1/assim_figure}
305  %% CNHend  %% CNHend
306    
307  \subsection{Ocean biogeochemical cycles}  \subsection{Ocean biogeochemical cycles}

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.16

  ViewVC Help
Powered by ViewVC 1.1.22