1 |
%%%% % $Header$ |
% $Header$ |
2 |
%%%% % $Name$ |
% $Name$ |
3 |
%%%% %\usepackage{oldgerm} |
%\usepackage{oldgerm} |
4 |
%%%% % I commented the following because it introduced excessive white space |
% I commented the following because it introduced excessive white space |
5 |
%%%% %\usepackage{palatcm} % better PDF |
%\usepackage{palatcm} % better PDF |
6 |
%%%% % page headers and footers |
% page headers and footers |
7 |
%%%% %\pagestyle{fancy} |
%\pagestyle{fancy} |
8 |
%%%% % referencing |
% referencing |
9 |
%%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
%% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
10 |
%%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
%% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
11 |
%%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
%% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
12 |
%%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
%% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
13 |
%%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
%% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
14 |
%%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
%% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
15 |
%%%% % stuff for psfrag |
% stuff for psfrag |
16 |
%%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
%% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
17 |
%%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
%% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
18 |
%%%% % This allows numbering of subsubsections |
% This allows numbering of subsubsections |
19 |
%%%% % This changes the the chapter title |
% This changes the the chapter title |
20 |
%%%% %\renewcommand{\chaptername}{Section} |
%\renewcommand{\chaptername}{Section} |
21 |
|
|
22 |
|
|
23 |
%%%% \documentclass[12pt]{book} |
%%%% \documentclass[12pt]{book} |
24 |
%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
25 |
%%%% \usepackage{amsmath} |
%%%% \usepackage{amsmath} |
26 |
%%%% \usepackage{html} |
%%%% \usepackage{html} |
27 |
%%%% \usepackage{epsfig} |
%%%% \usepackage{epsfig} |
30 |
%%%% \usepackage{multirow} |
%%%% \usepackage{multirow} |
31 |
%%%% \usepackage{fancyhdr} |
%%%% \usepackage{fancyhdr} |
32 |
%%%% \usepackage{psfrag} |
%%%% \usepackage{psfrag} |
33 |
%%%% |
|
34 |
%%%% %TCIDATA{OutputFilter=Latex.dll} |
%%%% %TCIDATA{OutputFilter=Latex.dll} |
35 |
%%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02} |
%%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
36 |
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
37 |
%%%% %TCIDATA{Language=American English} |
%%%% %TCIDATA{Language=American English} |
38 |
%%%% |
|
39 |
%%%% \fancyhead{} |
%%%% \fancyhead{} |
40 |
%%%% \fancyhead[LO]{\slshape \rightmark} |
%%%% \fancyhead[LO]{\slshape \rightmark} |
41 |
%%%% \fancyhead[RE]{\slshape \leftmark} |
%%%% \fancyhead[RE]{\slshape \leftmark} |
45 |
%%%% \renewcommand{\headrulewidth}{0.4pt} |
%%%% \renewcommand{\headrulewidth}{0.4pt} |
46 |
%%%% \renewcommand{\footrulewidth}{0.4pt} |
%%%% \renewcommand{\footrulewidth}{0.4pt} |
47 |
%%%% \setcounter{secnumdepth}{3} |
%%%% \setcounter{secnumdepth}{3} |
|
%%%% |
|
48 |
%%%% \input{tcilatex} |
%%%% \input{tcilatex} |
49 |
%%%% |
%%%% |
50 |
%%%% \begin{document} |
%%%% \begin{document} |
51 |
%%%% |
%%%% |
52 |
%%%% \tableofcontents |
%%%% \tableofcontents |
53 |
|
%%%% |
54 |
|
%%%% \pagebreak |
55 |
|
|
56 |
\pagebreak |
%%%% \part{MIT GCM basics} |
|
|
|
|
\part{MITgcm basics} |
|
57 |
|
|
58 |
% Section: Overview |
% Section: Overview |
59 |
|
|
81 |
\marginpar{ |
\marginpar{ |
82 |
Fig.1 One model}\ref{fig:onemodel} |
Fig.1 One model}\ref{fig:onemodel} |
83 |
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:onemodel} |
|
|
\end{figure} |
|
|
|
|
84 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
85 |
small-scale and large scale processes - see fig.2% |
small-scale and large scale processes - see fig.2% |
86 |
\marginpar{ |
\marginpar{ |
87 |
Fig.2 All scales}\ref{fig:all-scales} |
Fig.2 All scales}\ref{fig:all-scales} |
88 |
|
|
|
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:scales} |
|
|
\end{figure} |
|
|
|
|
|
|
|
89 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
90 |
discretization and support for the treatment of irregular geometries using |
discretization and support for the treatment of irregular geometries using |
91 |
orthogonal curvilinear grids and shaved cells - see fig.3% |
orthogonal curvilinear grids and shaved cells - see fig.3% |
118 |
kinds of problems the model has been used to study, we briefly describe some |
kinds of problems the model has been used to study, we briefly describe some |
119 |
of them here. A more detailed description of the underlying formulation, |
of them here. A more detailed description of the underlying formulation, |
120 |
numerical algorithm and implementation that lie behind these calculations is |
numerical algorithm and implementation that lie behind these calculations is |
121 |
given later. Indeed it is easy to reproduce the results shown here: simply |
given later. Indeed many of the illustrative examples shown below can be |
122 |
download the model (the minimum you need is a PC running linux, together |
easily reproduced: simply download the model (the minimum you need is a PC |
123 |
with a FORTRAN\ 77 compiler) and follow the examples. |
running linux, together with a FORTRAN\ 77 compiler) and follow the examples |
124 |
|
described in detail in the documentation. |
125 |
|
|
126 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
127 |
|
|
128 |
Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height |
A novel feature of MITgcm is its ability to simulate both atmospheric and |
129 |
field obtained using a 5-level version of the atmospheric pressure isomorph |
oceanographic flows at both small and large scales. |
|
run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies |
|
|
along the northern hemisphere storm track. There are no mountains or |
|
|
land-sea contrast in this calculation, but you can easily put them in. The |
|
|
model is driven by relaxation to a radiative-convective equilibrium profile, |
|
|
following the description set out in Held and Suarez; 1994 designed to test |
|
|
atmospheric hydrodynamical cores - there are no mountains or land-sea |
|
|
contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to |
|
|
descretize the globe permitting a uniform gridding and obviated the need to |
|
|
fourier filter. |
|
|
|
|
|
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
|
|
wind and meridional overturning streamfunction from the 5-level model. |
|
130 |
|
|
131 |
|
Fig.E1a.\ref{fig:Held-Suarez} shows an instantaneous plot of the 500$mb$ |
132 |
|
temperature field obtained using the atmospheric isomorph of MITgcm run at |
133 |
|
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole |
134 |
|
(blue) and warm air along an equatorial band (red). Fully developed |
135 |
|
baroclinic eddies spawned in the northern hemisphere storm track are |
136 |
|
evident. There are no mountains or land-sea contrast in this calculation, |
137 |
|
but you can easily put them in. The model is driven by relaxation to a |
138 |
|
radiative-convective equilibrium profile, following the description set out |
139 |
|
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - |
140 |
|
there are no mountains or land-sea contrast. |
141 |
|
|
142 |
|
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
143 |
|
globe permitting a uniform gridding and obviated the need to fourier filter. |
144 |
|
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
145 |
|
grid, of which the cubed sphere is just one of many choices. |
146 |
|
|
147 |
\begin{figure} |
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
148 |
\begin{center} |
wind and meridional overturning streamfunction from a 20-level version of |
149 |
\resizebox{!}{4in}{ |
the model. It compares favorable with more conventional spatial |
150 |
\rotatebox{90}{ |
discretization approaches. |
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:hscs} |
|
|
\end{figure} |
|
|
|
|
151 |
|
|
152 |
A regular spherical lat-lon grid can also be used. |
A regular spherical lat-lon grid can also be used. |
153 |
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:hslatlon} |
|
|
\end{figure} |
|
|
|
|
154 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
155 |
|
|
156 |
|
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
157 |
|
atmosphere. Ocean eddies play an important role in modifying the |
158 |
|
hydrographic structure and current systems of the oceans. Coarse resolution |
159 |
|
models of the oceans cannot resolve the eddy field and yield rather broad, |
160 |
|
diffusive patterns of ocean currents. But if the resolution of our models is |
161 |
|
increased until the baroclinic instability process is resolved, numerical |
162 |
|
solutions of a different and much more realistic kind, can be obtained. |
163 |
|
|
164 |
|
Fig. ?.? shows the surface temperature and velocity field obtained from |
165 |
|
MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$ |
166 |
|
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator |
167 |
|
(to avoid the converging of meridian in northern latitudes). 21 vertical |
168 |
|
levels are used in the vertical with a `lopped cell' representation of |
169 |
|
topography. The development and propagation of anomalously warm and cold |
170 |
|
eddies can be clearly been seen in the Gulf Stream region. The transport of |
171 |
|
warm water northward by the mean flow of the Gulf Stream is also clearly |
172 |
|
visible. |
173 |
|
|
174 |
\subsection{Global ocean circulation} |
\subsection{Global ocean circulation} |
175 |
|
|
176 |
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
177 |
global ocean model run with 15 vertical levels. The model is driven using |
global ocean model run with 15 vertical levels. Lopped cells are used to |
178 |
monthly-mean winds with mixed boundary conditions on temperature and |
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ |
179 |
salinity at the surface. Fig.E2b shows the overturning (thermohaline) |
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with |
180 |
circulation. Lopped cells are used to represent topography on a regular $% |
mixed boundary conditions on temperature and salinity at the surface. The |
181 |
lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$. |
transfer properties of ocean eddies, convection and mixing is parameterized |
182 |
|
in this model. |
183 |
|
|
184 |
\begin{figure} |
Fig.E2b shows the meridional overturning circulation of the global ocean in |
185 |
\begin{center} |
Sverdrups. |
186 |
\resizebox{!}{4in}{ |
|
187 |
% \rotatebox{90}{ |
\subsection{Convection and mixing over topography} |
188 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps} |
|
189 |
% } |
Dense plumes generated by localized cooling on the continental shelf of the |
190 |
} |
ocean may be influenced by rotation when the deformation radius is smaller |
191 |
\end{center} |
than the width of the cooling region. Rather than gravity plumes, the |
192 |
\label{fig:horizcirc} |
mechanism for moving dense fluid down the shelf is then through geostrophic |
193 |
\end{figure} |
eddies. The simulation shown in the figure (blue is cold dense fluid, red is |
194 |
|
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
195 |
\begin{figure} |
trigger convection by surface cooling. The cold, dense water falls down the |
196 |
\begin{center} |
slope but is deflected along the slope by rotation. It is found that |
197 |
\resizebox{!}{4in}{ |
entrainment in the vertical plane is reduced when rotational control is |
198 |
\rotatebox{90}{ |
strong, and replaced by lateral entrainment due to the baroclinic |
199 |
\rotatebox{180}{ |
instability of the along-slope current. |
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:moc} |
|
|
\end{figure} |
|
|
|
|
|
|
|
|
\subsection{Flow over topography} |
|
|
|
|
|
\subsection{Ocean convection} |
|
|
|
|
|
Fig.E3 shows convection over a slope using the non-hydrostatic ocean |
|
|
isomorph and lopped cells to respresent topography. .....The grid resolution |
|
|
is |
|
200 |
|
|
201 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
202 |
|
|
203 |
\subsection{Carbon outgassing sensitivity} |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
204 |
|
presence of complex geometry makes it an ideal tool to study internal wave |
205 |
Fig.E4 shows.... |
dynamics and mixing in oceanic canyons and ridges driven by large amplitude |
206 |
|
barotropic tidal currents imposed through open boundary conditions. |
207 |
\begin{figure} |
|
208 |
\begin{center} |
Fig. ?.? shows the influence of cross-slope topographic variations on |
209 |
\resizebox{!}{4in}{ |
internal wave breaking - the cross-slope velocity is in color, the density |
210 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps} |
contoured. The internal waves are excited by application of open boundary |
211 |
} |
conditions on the left.\ They propagate to the sloping boundary (represented |
212 |
\end{center} |
using MITgcm's finite volume spatial discretization) where they break under |
213 |
\label{fig:co2mrt} |
nonhydrostatic dynamics. |
214 |
\end{figure} |
|
215 |
|
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
216 |
|
|
217 |
|
Forward and tangent linear counterparts of MITgcm are supported using an |
218 |
|
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
219 |
|
data assimilation studies. |
220 |
|
|
221 |
|
As one example of application of the MITgcm adjoint, Fig.E4 maps the |
222 |
|
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
223 |
|
of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $% |
224 |
|
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is |
225 |
|
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
226 |
|
of deep water for the thermohaline circulations. This calculation also |
227 |
|
yields sensitivities to all other model parameters. |
228 |
|
|
229 |
|
\subsection{Global state estimation of the ocean} |
230 |
|
|
231 |
|
An important application of MITgcm is in state estimation of the global |
232 |
|
ocean circulation. An appropriately defined `cost function', which measures |
233 |
|
the departure of the model from observations (both remotely sensed and |
234 |
|
insitu) over an interval of time, is minimized by adjusting `control |
235 |
|
parameters' such as air-sea fluxes, the wind field, the initial conditions |
236 |
|
etc. Figure ?.? shows an estimate of the time-mean surface elevation of the |
237 |
|
ocean obtained by bringing the model in to consistency with altimetric and |
238 |
|
in-situ observations over the period 1992-1997. |
239 |
|
|
240 |
|
\subsection{Ocean biogeochemical cycles} |
241 |
|
|
242 |
|
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
243 |
|
example one can study the effects of interannual changes in meteorological |
244 |
|
forcing and upper ocean circulation on the fluxes of carbon dioxide and |
245 |
|
oxygen between the ocean and atmosphere. The figure shows the annual air-sea |
246 |
|
flux of oxygen and its relation to density outcrops in the southern oceans |
247 |
|
from a single year of a global, interannually varying simulation. |
248 |
|
|
249 |
|
Chris - get figure here: http://puddle.mit.edu/\symbol{126}% |
250 |
|
mick/biogeochem.html |
251 |
|
|
252 |
|
\subsection{Simulations of laboratory experiments} |
253 |
|
|
254 |
|
Figure ?.? shows MITgcm being used to simulate a laboratory experiment |
255 |
|
enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
256 |
|
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
257 |
|
free surface by a rotating heated disk. The combined action of mechanical |
258 |
|
and thermal forcing creates a lens of fluid which becomes baroclinically |
259 |
|
unstable. The stratification and depth of penetration of the lens is |
260 |
|
arrested by its instability in a process analogous to that whic sets the |
261 |
|
stratification of the ACC. |
262 |
|
|
263 |
% $Header$ |
% $Header$ |
264 |
% $Name$ |
% $Name$ |
285 |
\marginpar{ |
\marginpar{ |
286 |
Fig.5 The vertical coordinate of model}: |
Fig.5 The vertical coordinate of model}: |
287 |
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:vertcoord} |
|
|
\end{figure} |
|
|
|
|
288 |
\begin{equation*} |
\begin{equation*} |
289 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
290 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% |
303 |
\end{equation} |
\end{equation} |
304 |
|
|
305 |
\begin{equation*} |
\begin{equation*} |
306 |
b=b(\theta ,S,r)\text{ equation of state} |
b=b(\theta ,S,r)\text{ equation of state} |
307 |
\end{equation*} |
\end{equation*} |
308 |
|
|
309 |
\begin{equation*} |
\begin{equation*} |
310 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
311 |
\end{equation*} |
\end{equation*} |
312 |
|
|
313 |
\begin{equation*} |
\begin{equation*} |
314 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
315 |
\end{equation*} |
\end{equation*} |
316 |
|
|
317 |
Here: |
Here: |
318 |
|
|
319 |
\begin{equation*} |
\begin{equation*} |
320 |
r\text{ is the vertical coordinate} |
r\text{ is the vertical coordinate} |
321 |
\end{equation*} |
\end{equation*} |
322 |
|
|
323 |
\begin{equation*} |
\begin{equation*} |
324 |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
325 |
is the total derivative} |
is the total derivative} |
326 |
\end{equation*} |
\end{equation*} |
327 |
|
|
328 |
\begin{equation*} |
\begin{equation*} |
329 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
330 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
331 |
\end{equation*} |
\end{equation*} |
332 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
333 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
334 |
is a unit vector in the vertical |
is a unit vector in the vertical |
335 |
|
|
336 |
\begin{equation*} |
\begin{equation*} |
337 |
t\text{ is time} |
t\text{ is time} |
338 |
\end{equation*} |
\end{equation*} |
339 |
|
|
340 |
\begin{equation*} |
\begin{equation*} |
341 |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
342 |
velocity} |
velocity} |
343 |
\end{equation*} |
\end{equation*} |
344 |
|
|
345 |
\begin{equation*} |
\begin{equation*} |
346 |
\phi \text{ is the `pressure'/`geopotential'} |
\phi \text{ is the `pressure'/`geopotential'} |
347 |
\end{equation*} |
\end{equation*} |
348 |
|
|
349 |
\begin{equation*} |
\begin{equation*} |
350 |
\vec{\Omega}\text{ is the Earth's rotation} |
\vec{\Omega}\text{ is the Earth's rotation} |
351 |
\end{equation*} |
\end{equation*} |
352 |
|
|
353 |
\begin{equation*} |
\begin{equation*} |
354 |
b\text{ is the `buoyancy'} |
b\text{ is the `buoyancy'} |
355 |
\end{equation*} |
\end{equation*} |
356 |
|
|
357 |
\begin{equation*} |
\begin{equation*} |
358 |
\theta \text{ is potential temperature} |
\theta \text{ is potential temperature} |
359 |
\end{equation*} |
\end{equation*} |
360 |
|
|
361 |
\begin{equation*} |
\begin{equation*} |
362 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
363 |
\end{equation*} |
\end{equation*} |
364 |
|
|
365 |
\begin{equation*} |
\begin{equation*} |
368 |
\end{equation*} |
\end{equation*} |
369 |
|
|
370 |
\begin{equation*} |
\begin{equation*} |
371 |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }% |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta |
|
\theta |
|
372 |
\end{equation*} |
\end{equation*} |
373 |
|
|
374 |
\begin{equation*} |
\begin{equation*} |
397 |
Here |
Here |
398 |
|
|
399 |
\begin{equation*} |
\begin{equation*} |
400 |
R_{moving}=R_{o}+\eta |
R_{moving}=R_{o}+\eta |
401 |
\end{equation*} |
\end{equation*} |
402 |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
403 |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
465 |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
466 |
|
|
467 |
\begin{equation*} |
\begin{equation*} |
468 |
R_{fixed}=p_{top}=0 |
R_{fixed}=p_{top}=0 |
469 |
\end{equation*} |
\end{equation*} |
470 |
In a resting atmosphere the elevation of the mountains at the bottom is |
In a resting atmosphere the elevation of the mountains at the bottom is |
471 |
given by |
given by |
472 |
\begin{equation*} |
\begin{equation*} |
473 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
474 |
\end{equation*} |
\end{equation*} |
475 |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
476 |
atmosphere. |
atmosphere. |
580 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
581 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
582 |
\end{tabular}% |
\end{tabular}% |
583 |
\ \right. \qquad \label{eq:gu-speherical} |
\ \right. \qquad \label{eq:gu-speherical} |
584 |
\end{equation} |
\end{equation} |
585 |
|
|
586 |
\begin{equation} |
\begin{equation} |
599 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
600 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
601 |
\end{tabular}% |
\end{tabular}% |
602 |
\ \right. \qquad \label{eq:gv-spherical} |
\ \right. \qquad \label{eq:gv-spherical} |
603 |
\end{equation}% |
\end{equation}% |
604 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
605 |
|
|
606 |
\begin{equation} |
\begin{equation} |
607 |
\left. |
\left. |
618 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
619 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation}% |
620 |
\end{tabular}% |
\end{tabular}% |
621 |
\ \right. \label{eq:gw-spherical} |
\ \right. \label{eq:gw-spherical} |
622 |
\end{equation}% |
\end{equation}% |
623 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
624 |
|
|
625 |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
626 |
' is latitude. |
' is latitude. |
630 |
\marginpar{ |
\marginpar{ |
631 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
632 |
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:spcoord} |
|
|
\end{figure} |
|
|
|
|
|
|
|
633 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
634 |
|
|
635 |
Most models are based on the `hydrostatic primitive equations' (HPE's) in |
Most models are based on the `hydrostatic primitive equations' (HPE's) in |
638 |
Coriolis force is treated approximately and the shallow atmosphere |
Coriolis force is treated approximately and the shallow atmosphere |
639 |
approximation is made.\ The MITgcm need not make the `traditional |
approximation is made.\ The MITgcm need not make the `traditional |
640 |
approximation'. To be able to support consistent non-hydrostatic forms the |
approximation'. To be able to support consistent non-hydrostatic forms the |
641 |
shallow atmosphere approximation can be relaxed - when dividing through by $r |
shallow atmosphere approximation can be relaxed - when dividing through by $% |
642 |
$ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
643 |
the radius of the earth. |
the radius of the earth. |
644 |
|
|
645 |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
665 |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
666 |
|
|
667 |
\begin{equation*} |
\begin{equation*} |
668 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
669 |
\end{equation*} |
\end{equation*} |
670 |
making a small correction to the hydrostatic pressure. |
making a small correction to the hydrostatic pressure. |
671 |
|
|
746 |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
747 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
748 |
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:solnstart} |
|
|
\end{figure} |
|
|
|
|
|
|
|
749 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
750 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
751 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
772 |
|
|
773 |
\begin{equation*} |
\begin{equation*} |
774 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
775 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
776 |
\end{equation*} |
\end{equation*} |
777 |
and so |
and so |
778 |
|
|
794 |
|
|
795 |
\begin{equation*} |
\begin{equation*} |
796 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
797 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
798 |
\end{equation*} |
\end{equation*} |
799 |
|
|
800 |
Thus: |
Thus: |
802 |
\begin{equation*} |
\begin{equation*} |
803 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
804 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
805 |
_{h}dr=0 |
_{h}dr=0 |
806 |
\end{equation*} |
\end{equation*} |
807 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
808 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
818 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
819 |
be written |
be written |
820 |
\begin{equation} |
\begin{equation} |
821 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
822 |
\label{eq:phi-surf} |
\label{eq:phi-surf} |
823 |
\end{equation}% |
\end{equation}% |
824 |
where $b_{s}$ is the buoyancy at the surface. |
where $b_{s}$ is the buoyancy at the surface. |
877 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
878 |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
879 |
exploit classical 3D potential theory and, by introducing an appropriately |
exploit classical 3D potential theory and, by introducing an appropriately |
880 |
chosen $\delta $-function sheet of `source-charge', replace the inhomogenous |
chosen $\delta $-function sheet of `source-charge', replace the |
881 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
882 |
in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$ |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $% |
883 |
By simultaneously setting $% |
\vec{\mathbf{F}}.$ By simultaneously setting $% |
884 |
\begin{array}{l} |
\begin{array}{l} |
885 |
\widehat{n}.\vec{\mathbf{F}}% |
\widehat{n}.\vec{\mathbf{F}}% |
886 |
\end{array}% |
\end{array}% |
887 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
888 |
self-consistent but simpler homogenised Elliptic problem is obtained: |
self-consistent but simpler homogenized Elliptic problem is obtained: |
889 |
|
|
890 |
\begin{equation*} |
\begin{equation*} |
891 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
892 |
\end{equation*}% |
\end{equation*}% |
893 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
894 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
963 |
\begin{equation} |
\begin{equation} |
964 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
965 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
966 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
967 |
\label{eq:vi-identity} |
\label{eq:vi-identity} |
968 |
\end{equation}% |
\end{equation}% |
969 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
976 |
|
|
977 |
\subsection{Adjoint} |
\subsection{Adjoint} |
978 |
|
|
979 |
Tangent linear and adoint counterparts of the forward model and described in |
Tangent linear and adjoint counterparts of the forward model and described |
980 |
Chapter 5. |
in Chapter 5. |
981 |
|
|
982 |
% $Header$ |
% $Header$ |
983 |
% $Name$ |
% $Name$ |
992 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
993 |
\begin{eqnarray} |
\begin{eqnarray} |
994 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
995 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
996 |
\label{eq:atmos-mom} \\ |
\label{eq:atmos-mom} \\ |
997 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
998 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
999 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
1000 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
1001 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
1002 |
\end{eqnarray}% |
\end{eqnarray}% |
1003 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
1044 |
The heat equation is obtained by noting that |
The heat equation is obtained by noting that |
1045 |
\begin{equation*} |
\begin{equation*} |
1046 |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
1047 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
1048 |
\end{equation*} |
\end{equation*} |
1049 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
1050 |
\begin{equation} |
\begin{equation} |
1123 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
1124 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
1125 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
1126 |
\rho &=&\rho (\theta ,S,p) \\ |
\rho &=&\rho (\theta ,S,p) \\ |
1127 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
1128 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
1129 |
\end{eqnarray}% |
\end{eqnarray}% |
1205 |
pressure in the EOS by splitting the pressure into a reference function of |
pressure in the EOS by splitting the pressure into a reference function of |
1206 |
height and a perturbation: |
height and a perturbation: |
1207 |
\begin{equation*} |
\begin{equation*} |
1208 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
1209 |
\end{equation*} |
\end{equation*} |
1210 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
1211 |
differentiating the EOS, the continuity equation then becomes: |
differentiating the EOS, the continuity equation then becomes: |
1212 |
\begin{equation*} |
\begin{equation*} |
1213 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
1214 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
1215 |
\frac{\partial w}{\partial z}=0 |
\frac{\partial w}{\partial z}=0 |
1216 |
\end{equation*} |
\end{equation*} |
1217 |
If the time- and space-scales of the motions of interest are longer than |
If the time- and space-scales of the motions of interest are longer than |
1218 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
1335 |
and vertical direction respectively, are given by (see Fig.2) : |
and vertical direction respectively, are given by (see Fig.2) : |
1336 |
|
|
1337 |
\begin{equation*} |
\begin{equation*} |
1338 |
u=r\cos \phi \frac{D\lambda }{Dt} |
u=r\cos \phi \frac{D\lambda }{Dt} |
1339 |
\end{equation*} |
\end{equation*} |
1340 |
|
|
1341 |
\begin{equation*} |
\begin{equation*} |
1342 |
v=r\frac{D\phi }{Dt}\qquad |
v=r\frac{D\phi }{Dt}\qquad |
1343 |
\end{equation*} |
\end{equation*} |
1344 |
$\qquad \qquad \qquad \qquad $ |
$\qquad \qquad \qquad \qquad $ |
1345 |
|
|
1346 |
\begin{equation*} |
\begin{equation*} |
1347 |
\dot{r}=\frac{Dr}{Dt} |
\dot{r}=\frac{Dr}{Dt} |
1348 |
\end{equation*} |
\end{equation*} |
1349 |
|
|
1350 |
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
1357 |
\begin{equation*} |
\begin{equation*} |
1358 |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
1359 |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
1360 |
\right) |
\right) |
1361 |
\end{equation*} |
\end{equation*} |
1362 |
|
|
1363 |
\begin{equation*} |
\begin{equation*} |
1364 |
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
1365 |
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
1366 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
1367 |
\end{equation*} |
\end{equation*} |
1368 |
|
|
1369 |
%%%% \end{document} |
%%%% \end{document} |