/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Diff of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by cnh, Thu Sep 27 17:45:03 2001 UTC revision 1.15 by cnh, Wed Nov 21 16:33:17 2001 UTC
# Line 1  Line 1 
1  %%%% % $Header$  % $Header$
2  %%%% % $Name$  % $Name$
3  %%%% %\usepackage{oldgerm}  
4  %%%% % I commented the following because it introduced excessive white space  %tci%\documentclass[12pt]{book}
5  %%%% %\usepackage{palatcm}              % better PDF  %tci%\usepackage{amsmath}
6  %%%% % page headers and footers  %tci%\usepackage{html}
7  %%%% %\pagestyle{fancy}  %tci%\usepackage{epsfig}
8  %%%% % referencing  %tci%\usepackage{graphics,subfigure}
9  %%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}  %tci%\usepackage{array}
10  %%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}  %tci%\usepackage{multirow}
11  %%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}  %tci%\usepackage{fancyhdr}
12  %%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}}  %tci%\usepackage{psfrag}
13  %%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}  
14  %%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}}  %tci%%TCIDATA{OutputFilter=Latex.dll}
15  %%%% % stuff for psfrag  %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16  %%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}  %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17  %%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}  %tci%%TCIDATA{Language=American English}
18  %%%% % This allows numbering of subsubsections  
19  %%%% % This changes the the chapter title  %tci%\fancyhead{}
20  %%%% %\renewcommand{\chaptername}{Section}  %tci%\fancyhead[LO]{\slshape \rightmark}
21    %tci%\fancyhead[RE]{\slshape \leftmark}
22    %tci%\fancyhead[RO,LE]{\thepage}
23  %%%% \documentclass[12pt]{book}  %tci%\fancyfoot[CO,CE]{\today}
24  %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %tci%\fancyfoot[RO,LE]{ }
25  %%%% \usepackage{amsmath}  %tci%\renewcommand{\headrulewidth}{0.4pt}
26  %%%% \usepackage{html}  %tci%\renewcommand{\footrulewidth}{0.4pt}
27  %%%% \usepackage{epsfig}  %tci%\setcounter{secnumdepth}{3}
28  %%%% \usepackage{graphics,subfigure}  %tci%\input{tcilatex}
29  %%%% \usepackage{array}  
30  %%%% \usepackage{multirow}  %tci%\begin{document}
 %%%% \usepackage{fancyhdr}  
 %%%% \usepackage{psfrag}  
 %%%%  
 %%%% %TCIDATA{OutputFilter=Latex.dll}  
 %%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02}  
 %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}  
 %%%% %TCIDATA{Language=American English}  
 %%%%  
 %%%% \fancyhead{}  
 %%%% \fancyhead[LO]{\slshape \rightmark}  
 %%%% \fancyhead[RE]{\slshape \leftmark}  
 %%%% \fancyhead[RO,LE]{\thepage}  
 %%%% \fancyfoot[CO,CE]{\today}  
 %%%% \fancyfoot[RO,LE]{ }  
 %%%% \renewcommand{\headrulewidth}{0.4pt}  
 %%%% \renewcommand{\footrulewidth}{0.4pt}  
 %%%% \setcounter{secnumdepth}{3}  
 %%%%  
 %%%% \input{tcilatex}  
 %%%%  
 %%%% \begin{document}  
 %%%%  
 %%%% \tableofcontents  
31    
32  \pagebreak  %tci%\tableofcontents
33    
 \part{MITgcm basics}  
34    
35  % Section: Overview  % Section: Overview
36    
# Line 78  MITgcm has a number of novel aspects: Line 54  MITgcm has a number of novel aspects:
54  \begin{itemize}  \begin{itemize}
55  \item it can be used to study both atmospheric and oceanic phenomena; one  \item it can be used to study both atmospheric and oceanic phenomena; one
56  hydrodynamical kernel is used to drive forward both atmospheric and oceanic  hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57  models - see fig.1%  models - see fig \ref{fig:onemodel}
58  \marginpar{  
59  Fig.1 One model}\ref{fig:onemodel}  %% CNHbegin
60    \input{part1/one_model_figure}
61  \begin{figure}  %% CNHend
 \begin{center}  
 \resizebox{!}{4in}{  
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:onemodel}  
 \end{figure}  
62    
63  \item it has a non-hydrostatic capability and so can be used to study both  \item it has a non-hydrostatic capability and so can be used to study both
64  small-scale and large scale processes - see fig.2%  small-scale and large scale processes - see fig \ref{fig:all-scales}
 \marginpar{  
 Fig.2 All scales}\ref{fig:all-scales}  
   
   
 \begin{figure}  
 \begin{center}  
 \resizebox{!}{4in}{  
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:scales}  
 \end{figure}  
65    
66    %% CNHbegin
67    \input{part1/all_scales_figure}
68    %% CNHend
69    
70  \item finite volume techniques are employed yielding an intuitive  \item finite volume techniques are employed yielding an intuitive
71  discretization and support for the treatment of irregular geometries using  discretization and support for the treatment of irregular geometries using
72  orthogonal curvilinear grids and shaved cells - see fig.3%  orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
73  \marginpar{  
74  Fig.3 Finite volumes}\ref{fig:Finite volumes}  %% CNHbegin
75    \input{part1/fvol_figure}
76    %% CNHend
77    
78  \item tangent linear and adjoint counterparts are automatically maintained  \item tangent linear and adjoint counterparts are automatically maintained
79  along with the forward model, permitting sensitivity and optimization  along with the forward model, permitting sensitivity and optimization
# Line 129  studies. Line 83  studies.
83  computational platforms.  computational platforms.
84  \end{itemize}  \end{itemize}
85    
86  Key publications reporting on and charting the development of the model are  Key publications reporting on and charting the development of the model are:
87  listed in an Appendix.  
88    \begin{verbatim}
89    
90    Hill, C. and J. Marshall, (1995)
91    Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92    Parallel Computational Fluid Dynamics
93    In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94    and Results Using Parallel Computers, 545-552.
95    Elsevier Science B.V.: New York
96    
97    Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98    Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
99    J. Geophysical Res., 102(C3), 5733-5752.
100    
101    Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102    A finite-volume, incompressible Navier Stokes model for studies of the ocean
103    on parallel computers,
104    J. Geophysical Res., 102(C3), 5753-5766.
105    
106    Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107    Representation of topography by shaved cells in a height coordinate ocean
108    model
109    Mon Wea Rev, vol 125, 2293-2315
110    
111    Marshall, J., Jones, H. and C. Hill, (1998)
112    Efficient ocean modeling using non-hydrostatic algorithms
113    Journal of Marine Systems, 18, 115-134
114    
115    Adcroft, A., Hill C. and J. Marshall: (1999)
116    A new treatment of the Coriolis terms in C-grid models at both high and low
117    resolutions,
118    Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120    Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121    A Strategy for Terascale Climate Modeling.
122    In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123    in Meteorology, pages 406-425
124    World Scientific Publishing Co: UK
125    
126    Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127    Construction of the adjoint MIT ocean general circulation model and
128    application to Atlantic heat transport variability
129    J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131    
132    \end{verbatim}
133    
134  We begin by briefly showing some of the results of the model in action to  We begin by briefly showing some of the results of the model in action to
135  give a feel for the wide range of problems that can be addressed using it.  give a feel for the wide range of problems that can be addressed using it.
 \pagebreak  
136    
137  % $Header$  % $Header$
138  % $Name$  % $Name$
# Line 143  give a feel for the wide range of proble Line 141  give a feel for the wide range of proble
141    
142  The MITgcm has been designed and used to model a wide range of phenomena,  The MITgcm has been designed and used to model a wide range of phenomena,
143  from convection on the scale of meters in the ocean to the global pattern of  from convection on the scale of meters in the ocean to the global pattern of
144  atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the  atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
145  kinds of problems the model has been used to study, we briefly describe some  kinds of problems the model has been used to study, we briefly describe some
146  of them here. A more detailed description of the underlying formulation,  of them here. A more detailed description of the underlying formulation,
147  numerical algorithm and implementation that lie behind these calculations is  numerical algorithm and implementation that lie behind these calculations is
148  given later. Indeed it is easy to reproduce the results shown here: simply  given later. Indeed many of the illustrative examples shown below can be
149  download the model (the minimum you need is a PC running linux, together  easily reproduced: simply download the model (the minimum you need is a PC
150  with a FORTRAN\ 77 compiler) and follow the examples.  running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
151    described in detail in the documentation.
152    
153  \subsection{Global atmosphere: `Held-Suarez' benchmark}  \subsection{Global atmosphere: `Held-Suarez' benchmark}
154    
155  Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height  A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
156  field obtained using a 5-level version of the atmospheric pressure isomorph  both atmospheric and oceanographic flows at both small and large scales.
 run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies  
 along the northern hemisphere storm track. There are no mountains or  
 land-sea contrast in this calculation, but you can easily put them in. The  
 model is driven by relaxation to a radiative-convective equilibrium profile,  
 following the description set out in Held and Suarez; 1994 designed to test  
 atmospheric hydrodynamical cores - there are no mountains or land-sea  
 contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to  
 descretize the globe permitting a uniform gridding and obviated the need to  
 fourier filter.  
   
 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal  
 wind and meridional overturning streamfunction from the 5-level model.  
   
   
 \begin{figure}  
 \begin{center}  
 \resizebox{!}{4in}{  
  \rotatebox{90}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps}  
  }  
 }  
 \end{center}  
 \label{fig:hscs}  
 \end{figure}  
   
   
 A regular spherical lat-lon grid can also be used.  
   
 \begin{figure}  
 \begin{center}  
 \resizebox{!}{4in}{  
  \rotatebox{90}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps}  
  }  
 }  
 \end{center}  
 \label{fig:hslatlon}  
 \end{figure}  
157    
158  \subsection{Ocean gyres}  Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
159    temperature field obtained using the atmospheric isomorph of MITgcm run at
160    2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
161    (blue) and warm air along an equatorial band (red). Fully developed
162    baroclinic eddies spawned in the northern hemisphere storm track are
163    evident. There are no mountains or land-sea contrast in this calculation,
164    but you can easily put them in. The model is driven by relaxation to a
165    radiative-convective equilibrium profile, following the description set out
166    in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
167    there are no mountains or land-sea contrast.
168    
169    %% CNHbegin
170    \input{part1/cubic_eddies_figure}
171    %% CNHend
172    
173    As described in Adcroft (2001), a `cubed sphere' is used to discretize the
174    globe permitting a uniform griding and obviated the need to Fourier filter.
175    The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
176    grid, of which the cubed sphere is just one of many choices.
177    
178    Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
179    wind from a 20-level configuration of
180    the model. It compares favorable with more conventional spatial
181    discretization approaches. The two plots show the field calculated using the
182    cube-sphere grid and the flow calculated using a regular, spherical polar
183    latitude-longitude grid. Both grids are supported within the model.
184    
185    %% CNHbegin
186    \input{part1/hs_zave_u_figure}
187    %% CNHend
188    
189  \subsection{Global ocean circulation}  \subsection{Ocean gyres}
190    
191  Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$  Baroclinic instability is a ubiquitous process in the ocean, as well as the
192  global ocean model run with 15 vertical levels. The model is driven using  atmosphere. Ocean eddies play an important role in modifying the
193  monthly-mean winds with mixed boundary conditions on temperature and  hydrographic structure and current systems of the oceans. Coarse resolution
194  salinity at the surface. Fig.E2b shows the overturning (thermohaline)  models of the oceans cannot resolve the eddy field and yield rather broad,
195  circulation. Lopped cells are used to represent topography on a regular $%  diffusive patterns of ocean currents. But if the resolution of our models is
196  lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$.  increased until the baroclinic instability process is resolved, numerical
197    solutions of a different and much more realistic kind, can be obtained.
198    
199  \begin{figure}  Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
200  \begin{center}  field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
201  \resizebox{!}{4in}{  resolution on a $lat-lon$
202  % \rotatebox{90}{  grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
203    \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps}  (to avoid the converging of meridian in northern latitudes). 21 vertical
204  % }  levels are used in the vertical with a `lopped cell' representation of
205  }  topography. The development and propagation of anomalously warm and cold
206  \end{center}  eddies can be clearly seen in the Gulf Stream region. The transport of
207  \label{fig:horizcirc}  warm water northward by the mean flow of the Gulf Stream is also clearly
208  \end{figure}  visible.
209    
210  \begin{figure}  %% CNHbegin
211  \begin{center}  \input{part1/atl6_figure}
212  \resizebox{!}{4in}{  %% CNHend
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:moc}  
 \end{figure}  
   
   
 \subsection{Flow over topography}  
   
 \subsection{Ocean convection}  
   
 Fig.E3 shows convection over a slope using the non-hydrostatic ocean  
 isomorph and lopped cells to respresent topography. .....The grid resolution  
 is  
213    
 \subsection{Boundary forced internal waves}  
214    
215  \subsection{Carbon outgassing sensitivity}  \subsection{Global ocean circulation}
216    
217  Fig.E4 shows....  Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
218    the surface of a 4$^{\circ }$
219    global ocean model run with 15 vertical levels. Lopped cells are used to
220    represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
221    }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
222    mixed boundary conditions on temperature and salinity at the surface. The
223    transfer properties of ocean eddies, convection and mixing is parameterized
224    in this model.
225    
226    Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
227    circulation of the global ocean in Sverdrups.
228    
229    %%CNHbegin
230    \input{part1/global_circ_figure}
231    %%CNHend
232    
233    \subsection{Convection and mixing over topography}
234    
235    Dense plumes generated by localized cooling on the continental shelf of the
236    ocean may be influenced by rotation when the deformation radius is smaller
237    than the width of the cooling region. Rather than gravity plumes, the
238    mechanism for moving dense fluid down the shelf is then through geostrophic
239    eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
240    (blue is cold dense fluid, red is
241    warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
242    trigger convection by surface cooling. The cold, dense water falls down the
243    slope but is deflected along the slope by rotation. It is found that
244    entrainment in the vertical plane is reduced when rotational control is
245    strong, and replaced by lateral entrainment due to the baroclinic
246    instability of the along-slope current.
247    
248    %%CNHbegin
249    \input{part1/convect_and_topo}
250    %%CNHend
251    
252  \begin{figure}  \subsection{Boundary forced internal waves}
 \begin{center}  
 \resizebox{!}{4in}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps}  
 }  
 \end{center}  
 \label{fig:co2mrt}  
 \end{figure}  
253    
254    The unique ability of MITgcm to treat non-hydrostatic dynamics in the
255    presence of complex geometry makes it an ideal tool to study internal wave
256    dynamics and mixing in oceanic canyons and ridges driven by large amplitude
257    barotropic tidal currents imposed through open boundary conditions.
258    
259    Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
260    topographic variations on
261    internal wave breaking - the cross-slope velocity is in color, the density
262    contoured. The internal waves are excited by application of open boundary
263    conditions on the left. They propagate to the sloping boundary (represented
264    using MITgcm's finite volume spatial discretization) where they break under
265    nonhydrostatic dynamics.
266    
267    %%CNHbegin
268    \input{part1/boundary_forced_waves}
269    %%CNHend
270    
271    \subsection{Parameter sensitivity using the adjoint of MITgcm}
272    
273    Forward and tangent linear counterparts of MITgcm are supported using an
274    `automatic adjoint compiler'. These can be used in parameter sensitivity and
275    data assimilation studies.
276    
277    As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
278    maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
279    of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
280    at 60$^{\circ }$N and $
281    \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
282    a 100 year period. We see that $J$ is
283    sensitive to heat fluxes over the Labrador Sea, one of the important sources
284    of deep water for the thermohaline circulations. This calculation also
285    yields sensitivities to all other model parameters.
286    
287    %%CNHbegin
288    \input{part1/adj_hf_ocean_figure}
289    %%CNHend
290    
291    \subsection{Global state estimation of the ocean}
292    
293    An important application of MITgcm is in state estimation of the global
294    ocean circulation. An appropriately defined `cost function', which measures
295    the departure of the model from observations (both remotely sensed and
296    in-situ) over an interval of time, is minimized by adjusting `control
297    parameters' such as air-sea fluxes, the wind field, the initial conditions
298    etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
299    circulation and a Hopf-Muller plot of Equatorial sea-surface height.
300    Both are obtained from assimilation bringing the model in to
301    consistency with altimetric and in-situ observations over the period
302    1992-1997.
303    
304    %% CNHbegin
305    \input{part1/assim_figure}
306    %% CNHend
307    
308    \subsection{Ocean biogeochemical cycles}
309    
310    MITgcm is being used to study global biogeochemical cycles in the ocean. For
311    example one can study the effects of interannual changes in meteorological
312    forcing and upper ocean circulation on the fluxes of carbon dioxide and
313    oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
314    the annual air-sea flux of oxygen and its relation to density outcrops in
315    the southern oceans from a single year of a global, interannually varying
316    simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
317    telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
318    
319    %%CNHbegin
320    \input{part1/biogeo_figure}
321    %%CNHend
322    
323    \subsection{Simulations of laboratory experiments}
324    
325    Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
326    laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
327    initially homogeneous tank of water ($1m$ in diameter) is driven from its
328    free surface by a rotating heated disk. The combined action of mechanical
329    and thermal forcing creates a lens of fluid which becomes baroclinically
330    unstable. The stratification and depth of penetration of the lens is
331    arrested by its instability in a process analogous to that which sets the
332    stratification of the ACC.
333    
334    %%CNHbegin
335    \input{part1/lab_figure}
336    %%CNHend
337    
338  % $Header$  % $Header$
339  % $Name$  % $Name$
# Line 262  Fig.E4 shows.... Line 342  Fig.E4 shows....
342    
343  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
344  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
345  respective fluids - see fig.4%  respective fluids - see figure \ref{fig:isomorphic-equations}.
346  \marginpar{  One system of hydrodynamical equations is written down
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  
347  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
348  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
349  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
350  modeling the atmosphere and height, $z$, if we are modeling the ocean.  modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})
351    and height, $z$, if we are modeling the ocean (right hand side of figure
352    \ref{fig:isomorphic-equations}).
353    
354    %%CNHbegin
355    \input{part1/zandpcoord_figure.tex}
356    %%CNHend
357    
358  The state of the fluid at any time is characterized by the distribution of  The state of the fluid at any time is characterized by the distribution of
359  velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a  velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
# Line 276  velocity $\vec{\mathbf{v}}$, active trac Line 361  velocity $\vec{\mathbf{v}}$, active trac
361  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
362  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
363  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
364  a generic vertical coordinate, $r$, see fig.5%  a generic vertical coordinate, $r$, so that the appropriate
365  \marginpar{  kinematic boundary conditions can be applied isomorphically
366  Fig.5 The vertical coordinate of model}:  see figure \ref{fig:zandp-vert-coord}.
367    
368  \begin{figure}  %%CNHbegin
369  \begin{center}  \input{part1/vertcoord_figure.tex}
370  \resizebox{!}{4in}{  %%CNHend
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:vertcoord}  
 \end{figure}  
   
 \begin{equation*}  
 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%  
 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%  
 \text{ horizontal mtm}  
 \end{equation*}  
371    
372  \begin{equation*}  \begin{equation*}
373  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
374  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{  \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
375  vertical mtm}  \text{ horizontal mtm} \label{eq:horizontal_mtm}
376  \end{equation*}  \end{equation*}
377    
378  \begin{equation}  \begin{equation}
379  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
380  \partial r}=0\text{ continuity}  \label{eq:continuous}  v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
381    vertical mtm} \label{eq:vertical_mtm}
382  \end{equation}  \end{equation}
383    
384  \begin{equation*}  \begin{equation}
385  b=b(\theta ,S,r)\text{ equation of state}  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
386  \end{equation*}  \partial r}=0\text{ continuity}  \label{eq:continuity}
387    \end{equation}
388    
389  \begin{equation*}  \begin{equation}
390  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{  potential temperature}  b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
391  \end{equation*}  \end{equation}
392    
393  \begin{equation*}  \begin{equation}
394  \frac{DS}{Dt}=\mathcal{Q}_{S}\text{  humidity/salinity}  \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
395  \end{equation*}  \label{eq:potential_temperature}
396    \end{equation}
397    
398    \begin{equation}
399    \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
400    \label{eq:humidity_salt}
401    \end{equation}
402    
403  Here:  Here:
404    
405  \begin{equation*}  \begin{equation*}
406  r\text{ is the vertical coordinate}  r\text{ is the vertical coordinate}
407  \end{equation*}  \end{equation*}
408    
409  \begin{equation*}  \begin{equation*}
410  \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{  \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
411  is the total derivative}  is the total derivative}
412  \end{equation*}  \end{equation*}
413    
414  \begin{equation*}  \begin{equation*}
415  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
416  \text{ is the `grad' operator}  \text{ is the `grad' operator}
417  \end{equation*}  \end{equation*}
418  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
419  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
420  is a unit vector in the vertical  is a unit vector in the vertical
421    
422  \begin{equation*}  \begin{equation*}
423  t\text{ is time}  t\text{ is time}
424  \end{equation*}  \end{equation*}
425    
426  \begin{equation*}  \begin{equation*}
427  \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the  \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
428  velocity}  velocity}
429  \end{equation*}  \end{equation*}
430    
431  \begin{equation*}  \begin{equation*}
432  \phi \text{ is the `pressure'/`geopotential'}  \phi \text{ is the `pressure'/`geopotential'}
433  \end{equation*}  \end{equation*}
434    
435  \begin{equation*}  \begin{equation*}
436  \vec{\Omega}\text{ is the Earth's rotation}  \vec{\Omega}\text{ is the Earth's rotation}
437  \end{equation*}  \end{equation*}
438    
439  \begin{equation*}  \begin{equation*}
440  b\text{ is the `buoyancy'}  b\text{ is the `buoyancy'}
441  \end{equation*}  \end{equation*}
442    
443  \begin{equation*}  \begin{equation*}
444  \theta \text{ is potential temperature}  \theta \text{ is potential temperature}
445  \end{equation*}  \end{equation*}
446    
447  \begin{equation*}  \begin{equation*}
448  S\text{ is specific humidity in the atmosphere; salinity in the ocean}  S\text{ is specific humidity in the atmosphere; salinity in the ocean}
449  \end{equation*}  \end{equation*}
450    
451  \begin{equation*}  \begin{equation*}
452  \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%  \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
453  \mathbf{v}}  \mathbf{v}}
454  \end{equation*}  \end{equation*}
455    
456  \begin{equation*}  \begin{equation*}
457  \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }%  \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
 \theta  
458  \end{equation*}  \end{equation*}
459    
460  \begin{equation*}  \begin{equation*}
# Line 385  S\text{ is specific humidity in the atmo Line 462  S\text{ is specific humidity in the atmo
462  \end{equation*}  \end{equation*}
463    
464  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by  The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
465  extensive `physics' packages for atmosphere and ocean described in Chapter 6.  `physics' and forcing packages for atmosphere and ocean. These are described
466    in later chapters.
467    
468  \subsection{Kinematic Boundary conditions}  \subsection{Kinematic Boundary conditions}
469    
470  \subsubsection{vertical}  \subsubsection{vertical}
471    
472  at fixed and moving $r$ surfaces we set (see fig.5):  at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
473    
474  \begin{equation}  \begin{equation}
475  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}  \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
# Line 400  at fixed and moving $r$ surfaces we set Line 478  at fixed and moving $r$ surfaces we set
478    
479  \begin{equation}  \begin{equation}
480  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \  \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
481  (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc}  (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc}
482  \end{equation}  \end{equation}
483    
484  Here  Here
485    
486  \begin{equation*}  \begin{equation*}
487  R_{moving}=R_{o}+\eta  R_{moving}=R_{o}+\eta
488  \end{equation*}  \end{equation*}
489  where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on  where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
490  whether we are in the atmosphere or ocean) of the `moving surface' in the  whether we are in the atmosphere or ocean) of the `moving surface' in the
# Line 417  of motion. Line 495  of motion.
495    
496  \begin{equation}  \begin{equation}
497  \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow}  \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow}
498  \end{equation}%  \end{equation}
499  where $\vec{\mathbf{n}}$ is the normal to a solid boundary.  where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
500    
501  \subsection{Atmosphere}  \subsection{Atmosphere}
502    
503  In the atmosphere, see fig.5, we interpret:  In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
504    
505  \begin{equation}  \begin{equation}
506  r=p\text{ is the pressure}  \label{eq:atmos-r}  r=p\text{ is the pressure}  \label{eq:atmos-r}
# Line 454  where Line 532  where
532    
533  \begin{equation*}  \begin{equation*}
534  T\text{ is absolute temperature}  T\text{ is absolute temperature}
535  \end{equation*}%  \end{equation*}
536  \begin{equation*}  \begin{equation*}
537  p\text{ is the pressure}  p\text{ is the pressure}
538  \end{equation*}%  \end{equation*}
539  \begin{eqnarray*}  \begin{eqnarray*}
540  &&z\text{ is the height of the pressure surface} \\  &&z\text{ is the height of the pressure surface} \\
541  &&g\text{ is the acceleration due to gravity}  &&g\text{ is the acceleration due to gravity}
# Line 467  In the above the ideal gas law, $p=\rho Line 545  In the above the ideal gas law, $p=\rho
545  the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)  the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
546  \begin{equation}  \begin{equation}
547  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner}  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner}
548  \end{equation}%  \end{equation}
549  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
550  constant and $c_{p}$ the specific heat of air at constant pressure.  constant and $c_{p}$ the specific heat of air at constant pressure.
551    
552  At the top of the atmosphere (which is `fixed' in our $r$ coordinate):  At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
553    
554  \begin{equation*}  \begin{equation*}
555  R_{fixed}=p_{top}=0  R_{fixed}=p_{top}=0
556  \end{equation*}  \end{equation*}
557  In a resting atmosphere the elevation of the mountains at the bottom is  In a resting atmosphere the elevation of the mountains at the bottom is
558  given by  given by
559  \begin{equation*}  \begin{equation*}
560  R_{moving}=R_{o}(x,y)=p_{o}(x,y)  R_{moving}=R_{o}(x,y)=p_{o}(x,y)
561  \end{equation*}  \end{equation*}
562  i.e. the (hydrostatic) pressure at the top of the mountains in a resting  i.e. the (hydrostatic) pressure at the top of the mountains in a resting
563  atmosphere.  atmosphere.
# Line 493  The boundary conditions at top and botto Line 571  The boundary conditions at top and botto
571  atmosphere)}  \label{eq:moving-bc-atmos}  atmosphere)}  \label{eq:moving-bc-atmos}
572  \end{eqnarray}  \end{eqnarray}
573    
574  Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent  Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
575  set of atmospheric equations which, for convenience, are written out in $p$  yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
576  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).  coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
577    
578  \subsection{Ocean}  \subsection{Ocean}
# Line 517  At the bottom of the ocean: $R_{fixed}(x Line 595  At the bottom of the ocean: $R_{fixed}(x
595    
596  The surface of the ocean is given by: $R_{moving}=\eta $  The surface of the ocean is given by: $R_{moving}=\eta $
597    
598  The position of the resting free surface of the ocean is given by $%  The position of the resting free surface of the ocean is given by $
599  R_{o}=Z_{o}=0$.  R_{o}=Z_{o}=0$.
600    
601  Boundary conditions are:  Boundary conditions are:
# Line 525  Boundary conditions are: Line 603  Boundary conditions are:
603  \begin{eqnarray}  \begin{eqnarray}
604  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean}  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean}
605  \\  \\
606  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
607  \label{eq:moving-bc-ocean}}  \label{eq:moving-bc-ocean}}
608  \end{eqnarray}  \end{eqnarray}
609  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
610    
611  Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations  Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
612    of oceanic equations
613  which, for convenience, are written out in $z$ coordinates in Appendix Ocean  which, for convenience, are written out in $z$ coordinates in Appendix Ocean
614  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).  - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
615    
# Line 542  Let us separate $\phi $ in to surface, h Line 621  Let us separate $\phi $ in to surface, h
621  \begin{equation}  \begin{equation}
622  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
623  \label{eq:phi-split}  \label{eq:phi-split}
624  \end{equation}%  \end{equation}
625  and write eq(\ref{incompressible}a,b) in the form:  and write eq(\ref{eq:incompressible}) in the form:
626    
627  \begin{equation}  \begin{equation}
628  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
# Line 556  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l Line 635  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l
635  \end{equation}  \end{equation}
636    
637  \begin{equation}  \begin{equation}
638  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
639  \partial r}=G_{\dot{r}}  \label{eq:mom-w}  \partial r}=G_{\dot{r}}  \label{eq:mom-w}
640  \end{equation}  \end{equation}
641  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
642    
643  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
644  {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis  {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
645  terms in the momentum equations. In spherical coordinates they take the form%  terms in the momentum equations. In spherical coordinates they take the form
646  \footnote{%  \footnote{
647  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
648  in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%  in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
649  {eq:gw-spherical}) are omitted; the singly-underlined terms are included in  {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
650  the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%  the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
651  \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full  \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
652  discussion:  discussion:
653    
# Line 576  discussion: Line 655  discussion:
655  \left.  \left.
656  \begin{tabular}{l}  \begin{tabular}{l}
657  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
658  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
659  \\  \\
660  $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $  $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
661  \\  \\
662  $+\mathcal{F}_{u}$%  $+\mathcal{F}_{u}$
663  \end{tabular}%  \end{tabular}
664  \ \right\} \left\{  \ \right\} \left\{
665  \begin{tabular}{l}  \begin{tabular}{l}
666  \textit{advection} \\  \textit{advection} \\
667  \textit{metric} \\  \textit{metric} \\
668  \textit{Coriolis} \\  \textit{Coriolis} \\
669  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
670  \end{tabular}%  \end{tabular}
671  \ \right. \qquad   \label{eq:gu-speherical}  \ \right. \qquad  \label{eq:gu-speherical}
672  \end{equation}  \end{equation}
673    
674  \begin{equation}  \begin{equation}
675  \left.  \left.
676  \begin{tabular}{l}  \begin{tabular}{l}
677  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
678  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
679  $ \\  $ \\
680  $-\left\{ -2\Omega u\sin lat\right\} $ \\  $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
681  $+\mathcal{F}_{v}$%  $+\mathcal{F}_{v}$
682  \end{tabular}%  \end{tabular}
683  \ \right\} \left\{  \ \right\} \left\{
684  \begin{tabular}{l}  \begin{tabular}{l}
685  \textit{advection} \\  \textit{advection} \\
686  \textit{metric} \\  \textit{metric} \\
687  \textit{Coriolis} \\  \textit{Coriolis} \\
688  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
689  \end{tabular}%  \end{tabular}
690  \ \right. \qquad   \label{eq:gv-spherical}  \ \right. \qquad  \label{eq:gv-spherical}
691  \end{equation}%  \end{equation}
692  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
693    
694  \begin{equation}  \begin{equation}
695  \left.  \left.
696  \begin{tabular}{l}  \begin{tabular}{l}
697  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
698  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
699  ${+}\underline{{2\Omega u\cos lat}}$ \\  ${+}\underline{{2\Omega u\cos \varphi}}$ \\
700  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%  $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
701  \end{tabular}%  \end{tabular}
702  \ \right\} \left\{  \ \right\} \left\{
703  \begin{tabular}{l}  \begin{tabular}{l}
704  \textit{advection} \\  \textit{advection} \\
705  \textit{metric} \\  \textit{metric} \\
706  \textit{Coriolis} \\  \textit{Coriolis} \\
707  \textit{\ Forcing/Dissipation}%  \textit{\ Forcing/Dissipation}
708  \end{tabular}%  \end{tabular}
709  \ \right.   \label{eq:gw-spherical}  \ \right.  \label{eq:gw-spherical}
710  \end{equation}%  \end{equation}
711  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
712    
713  In the above `${r}$' is the distance from the center of the earth and `$lat$%  In the above `${r}$' is the distance from the center of the earth and `$\varphi$
714  ' is latitude.  ' is latitude.
715    
716  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
717  OPERATORS.%  OPERATORS.
 \marginpar{  
 Fig.6 Spherical polar coordinate system.}  
   
 \begin{figure}  
 \begin{center}  
 \resizebox{!}{4in}{  
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:spcoord}  
 \end{figure}  
718    
719    %%CNHbegin
720    \input{part1/sphere_coord_figure.tex}
721    %%CNHend
722    
723  \subsubsection{Shallow atmosphere approximation}  \subsubsection{Shallow atmosphere approximation}
724    
# Line 661  hydrostatic balance and the `traditional Line 728  hydrostatic balance and the `traditional
728  Coriolis force is treated approximately and the shallow atmosphere  Coriolis force is treated approximately and the shallow atmosphere
729  approximation is made.\ The MITgcm need not make the `traditional  approximation is made.\ The MITgcm need not make the `traditional
730  approximation'. To be able to support consistent non-hydrostatic forms the  approximation'. To be able to support consistent non-hydrostatic forms the
731  shallow atmosphere approximation can be relaxed - when dividing through by $r  shallow atmosphere approximation can be relaxed - when dividing through by $
732  $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,  r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
733  the radius of the earth.  the radius of the earth.
734    
735  \subsubsection{Hydrostatic and quasi-hydrostatic forms}  \subsubsection{Hydrostatic and quasi-hydrostatic forms}
736    \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
737    
738  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
739    
# Line 674  terms in Eqs. (\ref{eq:gu-speherical} $\ Line 742  terms in Eqs. (\ref{eq:gu-speherical} $\
742  are neglected and `${r}$' is replaced by `$a$', the mean radius of the  are neglected and `${r}$' is replaced by `$a$', the mean radius of the
743  earth. Once the pressure is found at one level - e.g. by inverting a 2-d  earth. Once the pressure is found at one level - e.g. by inverting a 2-d
744  Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be  Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
745  computed at all other levels by integration of the hydrostatic relation, eq(%  computed at all other levels by integration of the hydrostatic relation, eq(
746  \ref{eq:hydrostatic}).  \ref{eq:hydrostatic}).
747    
748  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
749  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
750  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic  \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
751  contribution to the pressure field: only the terms underlined twice in Eqs. (%  contribution to the pressure field: only the terms underlined twice in Eqs. (
752  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero  \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
753  and, simultaneously, the shallow atmosphere approximation is relaxed. In  and, simultaneously, the shallow atmosphere approximation is relaxed. In
754  \textbf{QH}\ \textit{all} the metric terms are retained and the full  \textbf{QH}\ \textit{all} the metric terms are retained and the full
# Line 688  variation of the radial position of a pa Line 756  variation of the radial position of a pa
756  vertical momentum equation (\ref{eq:mom-w}) becomes:  vertical momentum equation (\ref{eq:mom-w}) becomes:
757    
758  \begin{equation*}  \begin{equation*}
759  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat  \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
760  \end{equation*}  \end{equation*}
761  making a small correction to the hydrostatic pressure.  making a small correction to the hydrostatic pressure.
762    
# Line 704  only a quasi-non-hydrostatic atmospheric Line 772  only a quasi-non-hydrostatic atmospheric
772    
773  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
774    
775  In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%  In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
776  {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A  {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
777  three dimensional elliptic equation must be solved subject to Neumann  three dimensional elliptic equation must be solved subject to Neumann
778  boundary conditions (see below). It is important to note that use of the  boundary conditions (see below). It is important to note that use of the
779  full \textbf{NH} does not admit any new `fast' waves in to the system - the  full \textbf{NH} does not admit any new `fast' waves in to the system - the
780  incompressible condition eq(\ref{eq:continuous})c has already filtered out  incompressible condition eq(\ref{eq:continuity}) has already filtered out
781  acoustic modes. It does, however, ensure that the gravity waves are treated  acoustic modes. It does, however, ensure that the gravity waves are treated
782  accurately with an exact dispersion relation. The \textbf{NH} set has a  accurately with an exact dispersion relation. The \textbf{NH} set has a
783  complete angular momentum principle and consistent energetics - see White  complete angular momentum principle and consistent energetics - see White
# Line 717  and Bromley, 1995; Marshall et.al.\ 1997 Line 785  and Bromley, 1995; Marshall et.al.\ 1997
785    
786  \paragraph{Quasi-nonhydrostatic Atmosphere}  \paragraph{Quasi-nonhydrostatic Atmosphere}
787    
788  In the non-hydrostatic version of our atmospheric model we approximate $\dot{%  In the non-hydrostatic version of our atmospheric model we approximate $\dot{
789  r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})  r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
790  (but only here) by:  (but only here) by:
791    
792  \begin{equation}  \begin{equation}
793  \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w}  \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w}
794  \end{equation}%  \end{equation}
795  where $p_{hy}$ is the hydrostatic pressure.  where $p_{hy}$ is the hydrostatic pressure.
796    
797  \subsubsection{Summary of equation sets supported by model}  \subsubsection{Summary of equation sets supported by model}
# Line 751  equations in $z-$coordinates are support Line 819  equations in $z-$coordinates are support
819    
820  \subparagraph{Non-hydrostatic}  \subparagraph{Non-hydrostatic}
821    
822  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
823  coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%  coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
824  {eq:ocean-salt}).  {eq:ocean-salt}).
825    
826  \subsection{Solution strategy}  \subsection{Solution strategy}
827    
828  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
829  NH} models is summarized in Fig.7.%  NH} models is summarized in Figure \ref{fig:solution-strategy}.
830  \marginpar{  Under all dynamics, a 2-d elliptic equation is
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is  
831  first solved to find the surface pressure and the hydrostatic pressure at  first solved to find the surface pressure and the hydrostatic pressure at
832  any level computed from the weight of fluid above. Under \textbf{HPE} and  any level computed from the weight of fluid above. Under \textbf{HPE} and
833  \textbf{QH} dynamics, the horizontal momentum equations are then stepped  \textbf{QH} dynamics, the horizontal momentum equations are then stepped
# Line 769  forward and $\dot{r}$ found from continu Line 836  forward and $\dot{r}$ found from continu
836  stepping forward the horizontal momentum equations; $\dot{r}$ is found by  stepping forward the horizontal momentum equations; $\dot{r}$ is found by
837  stepping forward the vertical momentum equation.  stepping forward the vertical momentum equation.
838    
839  \begin{figure}  %%CNHbegin
840  \begin{center}  \input{part1/solution_strategy_figure.tex}
841  \resizebox{!}{4in}{  %%CNHend
  \rotatebox{90}{  
  \rotatebox{180}{  
   \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps}  
  }  
  }  
 }  
 \end{center}  
 \label{fig:solnstart}  
 \end{figure}  
   
842    
843  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
844  course, some complication that goes with the inclusion of $\cos \phi \ $%  course, some complication that goes with the inclusion of $\cos \varphi \ $
845  Coriolis terms and the relaxation of the shallow atmosphere approximation.  Coriolis terms and the relaxation of the shallow atmosphere approximation.
846  But this leads to negligible increase in computation. In \textbf{NH}, in  But this leads to negligible increase in computation. In \textbf{NH}, in
847  contrast, one additional elliptic equation - a three-dimensional one - must  contrast, one additional elliptic equation - a three-dimensional one - must
# Line 794  Marshall et al, 1997) resulting in a non Line 851  Marshall et al, 1997) resulting in a non
851  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.  hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
852    
853  \subsection{Finding the pressure field}  \subsection{Finding the pressure field}
854    \label{sec:finding_the_pressure_field}
855    
856  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the  Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
857  pressure field must be obtained diagnostically. We proceed, as before, by  pressure field must be obtained diagnostically. We proceed, as before, by
# Line 808  Hydrostatic pressure is obtained by inte Line 866  Hydrostatic pressure is obtained by inte
866  vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:  vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
867    
868  \begin{equation*}  \begin{equation*}
869  \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%  \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
870  \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr  \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
871  \end{equation*}  \end{equation*}
872  and so  and so
873    
# Line 826  atmospheric pressure pushing down on the Line 884  atmospheric pressure pushing down on the
884    
885  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
886    
887  The surface pressure equation can be obtained by integrating continuity, (%  The surface pressure equation can be obtained by integrating continuity,
888  \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
889    
890  \begin{equation*}  \begin{equation*}
891  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
892  }_{h}+\partial _{r}\dot{r}\right) dr=0  }_{h}+\partial _{r}\dot{r}\right) dr=0
893  \end{equation*}  \end{equation*}
894    
895  Thus:  Thus:
896    
897  \begin{equation*}  \begin{equation*}
898  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
899  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
900  _{h}dr=0  _{h}dr=0
901  \end{equation*}  \end{equation*}
902  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
903  r $. The above can be rearranged to yield, using Leibnitz's theorem:  r $. The above can be rearranged to yield, using Leibnitz's theorem:
904    
905  \begin{equation}  \begin{equation}
906  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
907  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
908  \label{eq:free-surface}  \label{eq:free-surface}
909  \end{equation}%  \end{equation}
910  where we have incorporated a source term.  where we have incorporated a source term.
911    
912  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
913  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
914  be written  be written
915  \begin{equation}  \begin{equation}
916  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
917  \label{eq:phi-surf}  \label{eq:phi-surf}
918  \end{equation}%  \end{equation}
919  where $b_{s}$ is the buoyancy at the surface.  where $b_{s}$ is the buoyancy at the surface.
920    
921  In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%  In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
922  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d  {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
923  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free  elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
924  surface' and `rigid lid' approaches are available.  surface' and `rigid lid' approaches are available.
925    
926  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
927    
928  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%  Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
929  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
930  (\ref{incompressible}), we deduce that:  (\ref{eq:continuity}), we deduce that:
931    
932  \begin{equation}  \begin{equation}
933  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
934  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
935  \vec{\mathbf{F}}  \label{eq:3d-invert}  \vec{\mathbf{F}}  \label{eq:3d-invert}
936  \end{equation}  \end{equation}
937    
# Line 893  coasts (in the ocean) and the bottom: Line 951  coasts (in the ocean) and the bottom:
951  \end{equation}  \end{equation}
952  where $\widehat{n}$ is a vector of unit length normal to the boundary. The  where $\widehat{n}$ is a vector of unit length normal to the boundary. The
953  kinematic condition (\ref{nonormalflow}) is also applied to the vertical  kinematic condition (\ref{nonormalflow}) is also applied to the vertical
954  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
955  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
956  tangential component of velocity, $v_{T}$, at all solid boundaries,  tangential component of velocity, $v_{T}$, at all solid boundaries,
957  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
958  equations - see below.  equations - see below.
959    
960  Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:  Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
961    
962  \begin{equation}  \begin{equation}
963  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
# Line 910  where Line 968  where
968  \begin{equation*}  \begin{equation*}
969  \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi  \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
970  _{s}+\mathbf{\nabla }\phi _{hyd}\right)  _{s}+\mathbf{\nabla }\phi _{hyd}\right)
971  \end{equation*}%  \end{equation*}
972  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
973  (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can  (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
974  exploit classical 3D potential theory and, by introducing an appropriately  exploit classical 3D potential theory and, by introducing an appropriately
975  chosen $\delta $-function sheet of `source-charge', replace the inhomogenous  chosen $\delta $-function sheet of `source-charge', replace the
976  boundary condition on pressure by a homogeneous one. The source term $rhs$  inhomogeneous boundary condition on pressure by a homogeneous one. The
977  in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$  source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
978  By simultaneously setting $%  \vec{\mathbf{F}}.$ By simultaneously setting $
979  \begin{array}{l}  \begin{array}{l}
980  \widehat{n}.\vec{\mathbf{F}}%  \widehat{n}.\vec{\mathbf{F}}
981  \end{array}%  \end{array}
982  =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following  =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
983  self-consistent but simpler homogenised Elliptic problem is obtained:  self-consistent but simpler homogenized Elliptic problem is obtained:
984    
985  \begin{equation*}  \begin{equation*}
986  \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad  \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
987  \end{equation*}%  \end{equation*}
988  where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such  where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
989  that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%  that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
990  {eq:inhom-neumann-nh}) the modified boundary condition becomes:  {eq:inhom-neumann-nh}) the modified boundary condition becomes:
991    
992  \begin{equation}  \begin{equation}
# Line 939  If the flow is `close' to hydrostatic ba Line 997  If the flow is `close' to hydrostatic ba
997  converges rapidly because $\phi _{nh}\ $is then only a small correction to  converges rapidly because $\phi _{nh}\ $is then only a small correction to
998  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).  the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
999    
1000  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})  The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1001  does not vanish at $r=R_{moving}$, and so refines the pressure there.  does not vanish at $r=R_{moving}$, and so refines the pressure there.
1002    
1003  \subsection{Forcing/dissipation}  \subsection{Forcing/dissipation}
# Line 947  does not vanish at $r=R_{moving}$, and s Line 1005  does not vanish at $r=R_{moving}$, and s
1005  \subsubsection{Forcing}  \subsubsection{Forcing}
1006    
1007  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by  The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1008  `physics packages' described in detail in chapter ??.  `physics packages' and forcing packages. These are described later on.
1009    
1010  \subsubsection{Dissipation}  \subsubsection{Dissipation}
1011    
# Line 957  Many forms of momentum dissipation are a Line 1015  Many forms of momentum dissipation are a
1015  biharmonic frictions are commonly used:  biharmonic frictions are commonly used:
1016    
1017  \begin{equation}  \begin{equation}
1018  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1019  +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation}  +A_{4}\nabla _{h}^{4}v  \label{eq:dissipation}
1020  \end{equation}  \end{equation}
1021  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
# Line 968  friction. These coefficients are the sam Line 1026  friction. These coefficients are the sam
1026    
1027  The mixing terms for the temperature and salinity equations have a similar  The mixing terms for the temperature and salinity equations have a similar
1028  form to that of momentum except that the diffusion tensor can be  form to that of momentum except that the diffusion tensor can be
1029  non-diagonal and have varying coefficients. $\qquad $%  non-diagonal and have varying coefficients. $\qquad $
1030  \begin{equation}  \begin{equation}
1031  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1032  _{h}^{4}(T,S)  \label{eq:diffusion}  _{h}^{4}(T,S)  \label{eq:diffusion}
1033  \end{equation}  \end{equation}
1034  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1035  horizontal coefficient for biharmonic diffusion. In the simplest case where  horizontal coefficient for biharmonic diffusion. In the simplest case where
1036  the subgrid-scale fluxes of heat and salt are parameterized with constant  the subgrid-scale fluxes of heat and salt are parameterized with constant
1037  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
# Line 984  reduces to a diagonal matrix with consta Line 1042  reduces to a diagonal matrix with consta
1042  \begin{array}{ccc}  \begin{array}{ccc}
1043  K_{h} & 0 & 0 \\  K_{h} & 0 & 0 \\
1044  0 & K_{h} & 0 \\  0 & K_{h} & 0 \\
1045  0 & 0 & K_{v}%  0 & 0 & K_{v}
1046  \end{array}  \end{array}
1047  \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor}  \right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor}
1048  \end{equation}  \end{equation}
# Line 994  salinity ... ). Line 1052  salinity ... ).
1052    
1053  \subsection{Vector invariant form}  \subsection{Vector invariant form}
1054    
1055  For some purposes it is advantageous to write momentum advection in eq(\ref%  For some purposes it is advantageous to write momentum advection in eq(\ref
1056  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1057    
1058  \begin{equation}  \begin{equation}
1059  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1060  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1061  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1062  \label{eq:vi-identity}  \label{eq:vi-identity}
1063  \end{equation}%  \end{equation}
1064  This permits alternative numerical treatments of the non-linear terms based  This permits alternative numerical treatments of the non-linear terms based
1065  on their representation as a vorticity flux. Because gradients of coordinate  on their representation as a vorticity flux. Because gradients of coordinate
1066  vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit  vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1067  representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%  representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1068  {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information  {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1069  about the geometry is contained in the areas and lengths of the volumes used  about the geometry is contained in the areas and lengths of the volumes used
1070  to discretize the model.  to discretize the model.
1071    
1072  \subsection{Adjoint}  \subsection{Adjoint}
1073    
1074  Tangent linear and adoint counterparts of the forward model and described in  Tangent linear and adjoint counterparts of the forward model are described
1075  Chapter 5.  in Chapter 5.
1076    
1077  % $Header$  % $Header$
1078  % $Name$  % $Name$
# Line 1028  coordinates} Line 1086  coordinates}
1086    
1087  The hydrostatic primitive equations (HPEs) in p-coordinates are:  The hydrostatic primitive equations (HPEs) in p-coordinates are:
1088  \begin{eqnarray}  \begin{eqnarray}
1089  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1090  _{h}+\mathbf{\nabla }_{p}\phi  &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1091  \label{eq:atmos-mom} \\  \label{eq:atmos-mom} \\
1092  \frac{\partial \phi }{\partial p}+\alpha  &=&0  \label{eq-p-hydro-start} \\  \frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\
1093  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1094  \partial p} &=&0  \label{eq:atmos-cont} \\  \partial p} &=&0  \label{eq:atmos-cont} \\
1095  p\alpha  &=&RT  \label{eq:atmos-eos} \\  p\alpha &=&RT  \label{eq:atmos-eos} \\
1096  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}  c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat}
1097  \end{eqnarray}%  \end{eqnarray}
1098  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure  where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1099  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1100  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total  \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1101  derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is  derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1102  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%  the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1103  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%  }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1104  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%  {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1105  e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%  e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1106  p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.  p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1107    
1108  It is convenient to cast the heat equation in terms of potential temperature  It is convenient to cast the heat equation in terms of potential temperature
# Line 1052  $\theta $ so that it looks more like a g Line 1110  $\theta $ so that it looks more like a g
1110  Differentiating (\ref{eq:atmos-eos}) we get:  Differentiating (\ref{eq:atmos-eos}) we get:
1111  \begin{equation*}  \begin{equation*}
1112  p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}  p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1113  \end{equation*}%  \end{equation*}
1114  which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%  which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1115  c_{p}=c_{v}+R$, gives:  c_{p}=c_{v}+R$, gives:
1116  \begin{equation}  \begin{equation}
1117  c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}  c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1118  \label{eq-p-heat-interim}  \label{eq-p-heat-interim}
1119  \end{equation}%  \end{equation}
1120  Potential temperature is defined:  Potential temperature is defined:
1121  \begin{equation}  \begin{equation}
1122  \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp}  \theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp}
1123  \end{equation}%  \end{equation}
1124  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience  where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1125  we will make use of the Exner function $\Pi (p)$ which defined by:  we will make use of the Exner function $\Pi (p)$ which defined by:
1126  \begin{equation}  \begin{equation}
1127  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner}  \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner}
1128  \end{equation}%  \end{equation}
1129  The following relations will be useful and are easily expressed in terms of  The following relations will be useful and are easily expressed in terms of
1130  the Exner function:  the Exner function:
1131  \begin{equation*}  \begin{equation*}
1132  c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi  c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1133  }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%  }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1134  \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%  \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1135  \frac{Dp}{Dt}  \frac{Dp}{Dt}
1136  \end{equation*}%  \end{equation*}
1137  where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.  where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1138    
1139  The heat equation is obtained by noting that  The heat equation is obtained by noting that
1140  \begin{equation*}  \begin{equation*}
1141  c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta  c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1142  \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}  \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1143  \end{equation*}  \end{equation*}
1144  and on substituting into (\ref{eq-p-heat-interim}) gives:  and on substituting into (\ref{eq-p-heat-interim}) gives:
1145  \begin{equation}  \begin{equation}
# Line 1090  and on substituting into (\ref{eq-p-heat Line 1148  and on substituting into (\ref{eq-p-heat
1148  \end{equation}  \end{equation}
1149  which is in conservative form.  which is in conservative form.
1150    
1151  For convenience in the model we prefer to step forward (\ref%  For convenience in the model we prefer to step forward (\ref
1152  {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).  {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1153    
1154  \subsubsection{Boundary conditions}  \subsubsection{Boundary conditions}
# Line 1134  _{o}(p_{o})=g~Z_{topo}$, defined: Line 1192  _{o}(p_{o})=g~Z_{topo}$, defined:
1192    
1193  The final form of the HPE's in p coordinates is then:  The final form of the HPE's in p coordinates is then:
1194  \begin{eqnarray}  \begin{eqnarray}
1195  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1196  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1197  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\  \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1198  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%  \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1199  \partial p} &=&0 \\  \partial p} &=&0 \\
1200  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\  \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1201  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime}  \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1202  \end{eqnarray}  \end{eqnarray}
1203    
1204  % $Header$  % $Header$
# Line 1154  We review here the method by which the s Line 1212  We review here the method by which the s
1212  HPE's for the ocean written in z-coordinates are obtained. The  HPE's for the ocean written in z-coordinates are obtained. The
1213  non-Boussinesq equations for oceanic motion are:  non-Boussinesq equations for oceanic motion are:
1214  \begin{eqnarray}  \begin{eqnarray}
1215  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1216  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1217  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1218  &=&\epsilon _{nh}\mathcal{F}_{w} \\  &=&\epsilon _{nh}\mathcal{F}_{w} \\
1219  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%  \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1220  _{h}+\frac{\partial w}{\partial z} &=&0 \\  _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1221  \rho  &=&\rho (\theta ,S,p) \\  \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1222  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1223  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt}
1224  \end{eqnarray}%  \label{eq:non-boussinesq}
1225    \end{eqnarray}
1226  These equations permit acoustics modes, inertia-gravity waves,  These equations permit acoustics modes, inertia-gravity waves,
1227  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline  non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1228  mode. As written, they cannot be integrated forward consistently - if we  mode. As written, they cannot be integrated forward consistently - if we
1229  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be  step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1230  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%  consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1231  {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is  {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1232  therefore necessary to manipulate the system as follows. Differentiating the  therefore necessary to manipulate the system as follows. Differentiating the
1233  EOS (equation of state) gives:  EOS (equation of state) gives:
# Line 1181  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp Line 1240  _{\theta ,S}\frac{Dp}{Dt}  \label{EOSexp
1240  \end{equation}  \end{equation}
1241    
1242  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the  Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1243  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%  reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
 {eq-zns-cont} gives:  
1244  \begin{equation}  \begin{equation}
1245  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1246  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}  v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure}
1247  \end{equation}  \end{equation}
1248  where we have used an approximation sign to indicate that we have assumed  where we have used an approximation sign to indicate that we have assumed
# Line 1192  adiabatic motion, dropping the $\frac{D\ Line 1250  adiabatic motion, dropping the $\frac{D\
1250  Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that  Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1251  can be explicitly integrated forward:  can be explicitly integrated forward:
1252  \begin{eqnarray}  \begin{eqnarray}
1253  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1254  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1255  \label{eq-cns-hmom} \\  \label{eq-cns-hmom} \\
1256  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}  \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1257  &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\  &=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\
1258  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%  \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1259  v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\  v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\
1260  \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\  \rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\
1261  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\
# Line 1211  wherever it appears in a product (ie. no Line 1269  wherever it appears in a product (ie. no
1269  `Boussinesq assumption'. The only term that then retains the full variation  `Boussinesq assumption'. The only term that then retains the full variation
1270  in $\rho $ is the gravitational acceleration:  in $\rho $ is the gravitational acceleration:
1271  \begin{eqnarray}  \begin{eqnarray}
1272  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1273  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1274  \label{eq-zcb-hmom} \\  \label{eq-zcb-hmom} \\
1275  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1276  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1277  \label{eq-zcb-hydro} \\  \label{eq-zcb-hydro} \\
1278  \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%  \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1279  \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\  \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\
1280  \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\  \rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\
1281  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\
1282  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt}
1283  \end{eqnarray}  \end{eqnarray}
1284  These equations still retain acoustic modes. But, because the  These equations still retain acoustic modes. But, because the
1285  ``compressible'' terms are linearized, the pressure equation \ref%  ``compressible'' terms are linearized, the pressure equation \ref
1286  {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent  {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1287  term appears as a Helmholtz term in the non-hydrostatic pressure equation).  term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1288  These are the \emph{truly} compressible Boussinesq equations. Note that the  These are the \emph{truly} compressible Boussinesq equations. Note that the
1289  EOS must have the same pressure dependency as the linearized pressure term,  EOS must have the same pressure dependency as the linearized pressure term,
1290  ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%  ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1291  c_{s}^{2}}$, for consistency.  c_{s}^{2}}$, for consistency.
1292    
1293  \subsubsection{`Anelastic' z-coordinate equations}  \subsubsection{`Anelastic' z-coordinate equations}
1294    
1295  The anelastic approximation filters the acoustic mode by removing the  The anelastic approximation filters the acoustic mode by removing the
1296  time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%  time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1297  ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%  ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1298  \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between  \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1299  continuity and EOS. A better solution is to change the dependency on  continuity and EOS. A better solution is to change the dependency on
1300  pressure in the EOS by splitting the pressure into a reference function of  pressure in the EOS by splitting the pressure into a reference function of
1301  height and a perturbation:  height and a perturbation:
1302  \begin{equation*}  \begin{equation*}
1303  \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })  \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1304  \end{equation*}  \end{equation*}
1305  Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from  Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1306  differentiating the EOS, the continuity equation then becomes:  differentiating the EOS, the continuity equation then becomes:
1307  \begin{equation*}  \begin{equation*}
1308  \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%  \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1309  Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%  Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1310  \frac{\partial w}{\partial z}=0  \frac{\partial w}{\partial z}=0
1311  \end{equation*}  \end{equation*}
1312  If the time- and space-scales of the motions of interest are longer than  If the time- and space-scales of the motions of interest are longer than
1313  those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%  those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1314  \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and  \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1315  $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%  $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1316  Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta  Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1317  ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon  ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1318  _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation  _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1319  and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the  and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1320  anelastic continuity equation:  anelastic continuity equation:
1321  \begin{equation}  \begin{equation}
1322  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1323  \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1}  \frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1}
1324  \end{equation}  \end{equation}
1325  A slightly different route leads to the quasi-Boussinesq continuity equation  A slightly different route leads to the quasi-Boussinesq continuity equation
1326  where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%  where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1327  \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%  \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1328  _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:  _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1329  \begin{equation}  \begin{equation}
1330  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1331  \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2}  \partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2}
1332  \end{equation}  \end{equation}
1333  Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same  Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
# Line 1278  equation if: Line 1336  equation if:
1336  \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}  \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1337  \end{equation}  \end{equation}
1338  Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$  Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1339  and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%  and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1340  g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The  g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1341  full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are  full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1342  then:  then:
1343  \begin{eqnarray}  \begin{eqnarray}
1344  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1345  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1346  \label{eq-zab-hmom} \\  \label{eq-zab-hmom} \\
1347  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1348  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1349  \label{eq-zab-hydro} \\  \label{eq-zab-hydro} \\
1350  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1351  \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\  \partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\
1352  \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\  \rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\
1353  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\
# Line 1302  Here, the objective is to drop the depth Line 1360  Here, the objective is to drop the depth
1360  technically, to also remove the dependence of $\rho $ on $p_{o}$. This would  technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1361  yield the ``truly'' incompressible Boussinesq equations:  yield the ``truly'' incompressible Boussinesq equations:
1362  \begin{eqnarray}  \begin{eqnarray}
1363  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1364  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1365  \label{eq-ztb-hmom} \\  \label{eq-ztb-hmom} \\
1366  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1367  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1368  \label{eq-ztb-hydro} \\  \label{eq-ztb-hydro} \\
1369  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}  \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
# Line 1324  retain compressibility effects in the de Line 1382  retain compressibility effects in the de
1382  density thus:  density thus:
1383  \begin{equation*}  \begin{equation*}
1384  \rho =\rho _{o}+\rho ^{\prime }  \rho =\rho _{o}+\rho ^{\prime }
1385  \end{equation*}%  \end{equation*}
1386  We then assert that variations with depth of $\rho _{o}$ are unimportant  We then assert that variations with depth of $\rho _{o}$ are unimportant
1387  while the compressible effects in $\rho ^{\prime }$ are:  while the compressible effects in $\rho ^{\prime }$ are:
1388  \begin{equation*}  \begin{equation*}
1389  \rho _{o}=\rho _{c}  \rho _{o}=\rho _{c}
1390  \end{equation*}%  \end{equation*}
1391  \begin{equation*}  \begin{equation*}
1392  \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}  \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1393  \end{equation*}%  \end{equation*}
1394  This then yields what we can call the semi-compressible Boussinesq  This then yields what we can call the semi-compressible Boussinesq
1395  equations:  equations:
1396  \begin{eqnarray}  \begin{eqnarray}
1397  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1398  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%  _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1399  \mathcal{F}}}  \label{eq:ocean-mom} \\  \mathcal{F}}}  \label{eq:ocean-mom} \\
1400  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho  \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1401  _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}  _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
# Line 1348  _{c}}\frac{\partial p^{\prime }}{\partia Line 1406  _{c}}\frac{\partial p^{\prime }}{\partia
1406  \\  \\
1407  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\  \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\
1408  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt}  \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt}
1409  \end{eqnarray}%  \end{eqnarray}
1410  Note that the hydrostatic pressure of the resting fluid, including that  Note that the hydrostatic pressure of the resting fluid, including that
1411  associated with $\rho _{c}$, is subtracted out since it has no effect on the  associated with $\rho _{c}$, is subtracted out since it has no effect on the
1412  dynamics.  dynamics.
# Line 1372  In spherical coordinates, the velocity c Line 1430  In spherical coordinates, the velocity c
1430  and vertical direction respectively, are given by (see Fig.2) :  and vertical direction respectively, are given by (see Fig.2) :
1431    
1432  \begin{equation*}  \begin{equation*}
1433  u=r\cos \phi \frac{D\lambda }{Dt}  u=r\cos \varphi \frac{D\lambda }{Dt}
1434  \end{equation*}  \end{equation*}
1435    
1436  \begin{equation*}  \begin{equation*}
1437  v=r\frac{D\phi }{Dt}\qquad  v=r\frac{D\varphi }{Dt}\qquad
1438  \end{equation*}  \end{equation*}
1439  $\qquad \qquad \qquad \qquad $  $\qquad \qquad \qquad \qquad $
1440    
1441  \begin{equation*}  \begin{equation*}
1442  \dot{r}=\frac{Dr}{Dt}  \dot{r}=\frac{Dr}{Dt}
1443  \end{equation*}  \end{equation*}
1444    
1445  Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial  Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1446  distance of the particle from the center of the earth, $\Omega $ is the  distance of the particle from the center of the earth, $\Omega $ is the
1447  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.  angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1448    
# Line 1392  The `grad' ($\nabla $) and `div' ($\nabl Line 1450  The `grad' ($\nabla $) and `div' ($\nabl
1450  spherical coordinates:  spherical coordinates:
1451    
1452  \begin{equation*}  \begin{equation*}
1453  \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%  \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1454  ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%  ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1455  \right)  \right)
1456  \end{equation*}  \end{equation*}
1457    
1458  \begin{equation*}  \begin{equation*}
1459  \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial  \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1460  \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}  \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1461  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}  +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1462  \end{equation*}  \end{equation*}
1463    
1464  %%%% \end{document}  %tci%\end{document}

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22