Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_overview/text/manual.tex 2001/11/13 20:13:07 1.9
+++ manual/s_overview/text/manual.tex 2001/11/13 20:35:51 1.10
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
%tci%\documentclass[12pt]{book}
@@ -34,7 +34,7 @@
% Section: Overview
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Introduction}
@@ -89,7 +89,7 @@
We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Illustrations of the model in action}
@@ -102,7 +102,7 @@
numerical algorithm and implementation that lie behind these calculations is
given later. Indeed many of the illustrative examples shown below can be
easily reproduced: simply download the model (the minimum you need is a PC
-running linux, together with a FORTRAN\ 77 compiler) and follow the examples
+running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
described in detail in the documentation.
\subsection{Global atmosphere: `Held-Suarez' benchmark}
@@ -126,7 +126,7 @@
%% CNHend
As described in Adcroft (2001), a `cubed sphere' is used to discretize the
-globe permitting a uniform gridding and obviated the need to Fourier filter.
+globe permitting a uniform griding and obviated the need to Fourier filter.
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
grid, of which the cubed sphere is just one of many choices.
@@ -231,7 +231,7 @@
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
-of the overturning streamfunction shown in figure \ref{fig:large-scale-circ}
+of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
at 60$^{\circ }$N and $
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
a 100 year period. We see that $J$ is
@@ -248,7 +248,7 @@
An important application of MITgcm is in state estimation of the global
ocean circulation. An appropriately defined `cost function', which measures
the departure of the model from observations (both remotely sensed and
-insitu) over an interval of time, is minimized by adjusting `control
+in-situ) over an interval of time, is minimized by adjusting `control
parameters' such as air-sea fluxes, the wind field, the initial conditions
etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean
surface elevation of the ocean obtained by bringing the model in to
@@ -277,7 +277,7 @@
\subsection{Simulations of laboratory experiments}
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
-laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
+laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
initially homogeneous tank of water ($1m$ in diameter) is driven from its
free surface by a rotating heated disk. The combined action of mechanical
and thermal forcing creates a lens of fluid which becomes baroclinically
@@ -289,7 +289,7 @@
\input{part1/lab_figure}
%%CNHend
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Continuous equations in `r' coordinates}
@@ -432,7 +432,7 @@
\begin{equation}
\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
-(oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
+(ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
\end{equation}
Here
@@ -1028,7 +1028,7 @@
Tangent linear and adjoint counterparts of the forward model are described
in Chapter 5.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Appendix ATMOSPHERE}
@@ -1155,7 +1155,7 @@
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
\end{eqnarray}
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Appendix OCEAN}
@@ -1178,7 +1178,7 @@
\label{eq:non-boussinesq}
\end{eqnarray}
These equations permit acoustics modes, inertia-gravity waves,
-non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
+non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
mode. As written, they cannot be integrated forward consistently - if we
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
@@ -1371,7 +1371,7 @@
_{nh}=0$ form of these equations that are used throughout the ocean modeling
community and referred to as the primitive equations (HPE).
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.9 2001/11/13 20:13:07 adcroft Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.10 2001/11/13 20:35:51 cnh Exp $
% $Name: $
\section{Appendix:OPERATORS}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |