Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_overview/text/manual.tex 2010/08/30 23:09:21 1.29
+++ manual/s_overview/text/manual.tex 2016/05/11 18:45:43 1.30
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.30 2016/05/11 18:45:43 jmc Exp $
% $Name: $
%tci%\documentclass[12pt]{book}
@@ -34,9 +34,6 @@
% Section: Overview
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
This document provides the reader with the information necessary to
carry out numerical experiments using MITgcm. It gives a comprehensive
description of the continuous equations on which the model is based, the
@@ -139,9 +136,6 @@
We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
\section{Illustrations of the model in action}
MITgcm has been designed and used to model a wide range of phenomena,
@@ -376,9 +370,6 @@
\input{s_overview/text/lab_figure}
%%CNHend
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
\section{Continuous equations in `r' coordinates}
\begin{rawhtml}
<!-- CMIREDIR:z-p_isomorphism: -->
@@ -1129,9 +1120,6 @@
Tangent linear and adjoint counterparts of the forward model are described
in Chapter 5.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
\section{Appendix ATMOSPHERE}
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
@@ -1151,14 +1139,14 @@
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
\end{eqnarray}
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
-surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
-\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
-derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
-the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
-}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
-{eq:atmos-heat}) is the first law of thermodynamics where internal energy $
-e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
-p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
+surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t}
++\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$
+is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter,
+$\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume,
+$\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate.
+Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal
+energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass
+and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
It is convenient to cast the heat equation in terms of potential temperature
$\theta $ so that it looks more like a generic conservation law.
@@ -1258,9 +1246,6 @@
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
\end{eqnarray}
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
\section{Appendix OCEAN}
\subsection{Equations of motion for the ocean}
@@ -1475,9 +1460,6 @@
_{nh}=0$ form of these equations that are used throughout the ocean modeling
community and referred to as the primitive equations (HPE).
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.29 2010/08/30 23:09:21 jmc Exp $
-% $Name: $
-
\section{Appendix:OPERATORS}
\subsection{Coordinate systems}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |