Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_overview/text/manual.tex 2004/10/15 14:44:25 1.20
+++ manual/s_overview/text/manual.tex 2004/10/16 03:40:12 1.21
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
%tci%\documentclass[12pt]{book}
@@ -34,7 +34,7 @@
% Section: Overview
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
This document provides the reader with the information necessary to
@@ -137,7 +137,7 @@
We begin by briefly showing some of the results of the model in action to
give a feel for the wide range of problems that can be addressed using it.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
\section{Illustrations of the model in action}
@@ -372,7 +372,7 @@
\input{part1/lab_figure}
%%CNHend
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
\section{Continuous equations in `r' coordinates}
@@ -611,9 +611,11 @@
atmosphere)} \label{eq:moving-bc-atmos}
\end{eqnarray}
-Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
-yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
-coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
+Then the (hydrostatic form of) equations
+(\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
+set of atmospheric equations which, for convenience, are written out
+in $p$ coordinates in Appendix Atmosphere - see
+eqs(\ref{eq:atmos-prime}).
\subsection{Ocean}
@@ -1098,8 +1100,9 @@
\subsection{Vector invariant form}
-For some purposes it is advantageous to write momentum advection in eq(\ref
-{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
+For some purposes it is advantageous to write momentum advection in
+eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
+(so-called) `vector invariant' form:
\begin{equation}
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
@@ -1120,7 +1123,7 @@
Tangent linear and adjoint counterparts of the forward model are described
in Chapter 5.
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
\section{Appendix ATMOSPHERE}
@@ -1239,7 +1242,8 @@
The final form of the HPE's in p coordinates is then:
\begin{eqnarray}
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
-_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
+_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
+\label{eq:atmos-prime} \\
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
\partial p} &=&0 \\
@@ -1247,7 +1251,7 @@
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
\end{eqnarray}
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
\section{Appendix OCEAN}
@@ -1285,8 +1289,9 @@
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
\end{equation}
-Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
-reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
+Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
+the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
+\ref{eq-zns-cont} gives:
\begin{equation}
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
@@ -1463,7 +1468,7 @@
_{nh}=0$ form of these equations that are used throughout the ocean modeling
community and referred to as the primitive equations (HPE).
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.20 2004/10/15 14:44:25 jmc Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/text/manual.tex,v 1.21 2004/10/16 03:40:12 edhill Exp $
% $Name: $
\section{Appendix:OPERATORS}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |