| 54 | 
 \begin{itemize} | 
 \begin{itemize} | 
| 55 | 
 \item it can be used to study both atmospheric and oceanic phenomena; one | 
 \item it can be used to study both atmospheric and oceanic phenomena; one | 
| 56 | 
 hydrodynamical kernel is used to drive forward both atmospheric and oceanic | 
 hydrodynamical kernel is used to drive forward both atmospheric and oceanic | 
| 57 | 
 models - see fig | 
 models - see fig \ref{fig:onemodel} | 
 | 
 \marginpar{ | 
  | 
 | 
 Fig.1 One model}\ref{fig:onemodel} | 
  | 
| 58 | 
  | 
  | 
| 59 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 60 | 
 \input{part1/one_model_figure} | 
 \input{part1/one_model_figure} | 
| 61 | 
 %% CNHend | 
 %% CNHend | 
| 62 | 
  | 
  | 
| 63 | 
 \item it has a non-hydrostatic capability and so can be used to study both | 
 \item it has a non-hydrostatic capability and so can be used to study both | 
| 64 | 
 small-scale and large scale processes - see fig  | 
 small-scale and large scale processes - see fig \ref{fig:all-scales} | 
 | 
 \marginpar{ | 
  | 
 | 
 Fig.2 All scales}\ref{fig:all-scales} | 
  | 
| 65 | 
  | 
  | 
| 66 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 67 | 
 \input{part1/all_scales_figure} | 
 \input{part1/all_scales_figure} | 
| 69 | 
  | 
  | 
| 70 | 
 \item finite volume techniques are employed yielding an intuitive | 
 \item finite volume techniques are employed yielding an intuitive | 
| 71 | 
 discretization and support for the treatment of irregular geometries using | 
 discretization and support for the treatment of irregular geometries using | 
| 72 | 
 orthogonal curvilinear grids and shaved cells - see fig  | 
 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} | 
 | 
 \marginpar{ | 
  | 
 | 
 Fig.3 Finite volumes}\ref{fig:finite-volumes} | 
  | 
| 73 | 
  | 
  | 
| 74 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 75 | 
 \input{part1/fvol_figure} | 
 \input{part1/fvol_figure} | 
| 96 | 
  | 
  | 
| 97 | 
 The MITgcm has been designed and used to model a wide range of phenomena, | 
 The MITgcm has been designed and used to model a wide range of phenomena, | 
| 98 | 
 from convection on the scale of meters in the ocean to the global pattern of | 
 from convection on the scale of meters in the ocean to the global pattern of | 
| 99 | 
 atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the | 
 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the | 
| 100 | 
 kinds of problems the model has been used to study, we briefly describe some | 
 kinds of problems the model has been used to study, we briefly describe some | 
| 101 | 
 of them here. A more detailed description of the underlying formulation, | 
 of them here. A more detailed description of the underlying formulation, | 
| 102 | 
 numerical algorithm and implementation that lie behind these calculations is | 
 numerical algorithm and implementation that lie behind these calculations is | 
| 103 | 
 given later. Indeed many of the illustrative examples shown below can be | 
 given later. Indeed many of the illustrative examples shown below can be | 
| 104 | 
 easily reproduced: simply download the model (the minimum you need is a PC | 
 easily reproduced: simply download the model (the minimum you need is a PC | 
| 105 | 
 running linux, together with a FORTRAN\ 77 compiler) and follow the examples | 
 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples | 
| 106 | 
 described in detail in the documentation. | 
 described in detail in the documentation. | 
| 107 | 
  | 
  | 
| 108 | 
 \subsection{Global atmosphere: `Held-Suarez' benchmark} | 
 \subsection{Global atmosphere: `Held-Suarez' benchmark} | 
| 109 | 
  | 
  | 
| 110 | 
 A novel feature of MITgcm is its ability to simulate both atmospheric and | 
 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,  | 
| 111 | 
 oceanographic flows at both small and large scales. | 
 both atmospheric and oceanographic flows at both small and large scales. | 
| 112 | 
  | 
  | 
| 113 | 
 Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
| 114 | 
 temperature field obtained using the atmospheric isomorph of MITgcm run at | 
 temperature field obtained using the atmospheric isomorph of MITgcm run at | 
| 115 | 
 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
| 116 | 
 (blue) and warm air along an equatorial band (red). Fully developed | 
 (blue) and warm air along an equatorial band (red). Fully developed | 
| 126 | 
 %% CNHend | 
 %% CNHend | 
| 127 | 
  | 
  | 
| 128 | 
 As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
 As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
| 129 | 
 globe permitting a uniform gridding and obviated the need to fourier filter. | 
 globe permitting a uniform griding and obviated the need to Fourier filter. | 
| 130 | 
 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear | 
 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear | 
| 131 | 
 grid, of which the cubed sphere is just one of many choices. | 
 grid, of which the cubed sphere is just one of many choices. | 
| 132 | 
  | 
  | 
| 133 | 
 Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal | 
 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal | 
| 134 | 
 wind and meridional overturning streamfunction from a 20-level version of | 
 wind from a 20-level configuration of | 
| 135 | 
 the model. It compares favorable with more conventional spatial | 
 the model. It compares favorable with more conventional spatial | 
| 136 | 
 discretization approaches. | 
 discretization approaches. The two plots show the field calculated using the | 
| 137 | 
  | 
 cube-sphere grid and the flow calculated using a regular, spherical polar | 
| 138 | 
 A regular spherical lat-lon grid can also be used. | 
 latitude-longitude grid. Both grids are supported within the model. | 
| 139 | 
  | 
  | 
| 140 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 141 | 
 \input{part1/hs_zave_u_figure} | 
 \input{part1/hs_zave_u_figure} | 
| 151 | 
 increased until the baroclinic instability process is resolved, numerical | 
 increased until the baroclinic instability process is resolved, numerical | 
| 152 | 
 solutions of a different and much more realistic kind, can be obtained. | 
 solutions of a different and much more realistic kind, can be obtained. | 
| 153 | 
  | 
  | 
| 154 | 
 Fig. ?.? shows the surface temperature and velocity field obtained from | 
 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity  | 
| 155 | 
 MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$ | 
 field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal  | 
| 156 | 
  | 
 resolution on a $lat-lon$ | 
| 157 | 
 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator | 
 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator | 
| 158 | 
 (to avoid the converging of meridian in northern latitudes). 21 vertical | 
 (to avoid the converging of meridian in northern latitudes). 21 vertical | 
| 159 | 
 levels are used in the vertical with a `lopped cell' representation of | 
 levels are used in the vertical with a `lopped cell' representation of | 
| 160 | 
 topography. The development and propagation of anomalously warm and cold | 
 topography. The development and propagation of anomalously warm and cold | 
| 161 | 
 eddies can be clearly been seen in the Gulf Stream region. The transport of | 
 eddies can be clearly seen in the Gulf Stream region. The transport of | 
| 162 | 
 warm water northward by the mean flow of the Gulf Stream is also clearly | 
 warm water northward by the mean flow of the Gulf Stream is also clearly | 
| 163 | 
 visible. | 
 visible. | 
| 164 | 
  | 
  | 
| 169 | 
  | 
  | 
| 170 | 
 \subsection{Global ocean circulation} | 
 \subsection{Global ocean circulation} | 
| 171 | 
  | 
  | 
| 172 | 
 Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ | 
 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  | 
| 173 | 
  | 
 the surface of a 4$^{\circ }$ | 
| 174 | 
 global ocean model run with 15 vertical levels. Lopped cells are used to | 
 global ocean model run with 15 vertical levels. Lopped cells are used to | 
| 175 | 
 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ | 
 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ | 
| 176 | 
 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with | 
 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with | 
| 178 | 
 transfer properties of ocean eddies, convection and mixing is parameterized | 
 transfer properties of ocean eddies, convection and mixing is parameterized | 
| 179 | 
 in this model. | 
 in this model. | 
| 180 | 
  | 
  | 
| 181 | 
 Fig.E2b shows the meridional overturning circulation of the global ocean in | 
 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning  | 
| 182 | 
 Sverdrups. | 
 circulation of the global ocean in Sverdrups. | 
| 183 | 
  | 
  | 
| 184 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 185 | 
 \input{part1/global_circ_figure} | 
 \input{part1/global_circ_figure} | 
| 191 | 
 ocean may be influenced by rotation when the deformation radius is smaller | 
 ocean may be influenced by rotation when the deformation radius is smaller | 
| 192 | 
 than the width of the cooling region. Rather than gravity plumes, the | 
 than the width of the cooling region. Rather than gravity plumes, the | 
| 193 | 
 mechanism for moving dense fluid down the shelf is then through geostrophic | 
 mechanism for moving dense fluid down the shelf is then through geostrophic | 
| 194 | 
 eddies. The simulation shown in the figure (blue is cold dense fluid, red is | 
 eddies. The simulation shown in the figure \ref{fig:convect-and-topo} | 
| 195 | 
  | 
 (blue is cold dense fluid, red is | 
| 196 | 
 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to | 
 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to | 
| 197 | 
 trigger convection by surface cooling. The cold, dense water falls down the | 
 trigger convection by surface cooling. The cold, dense water falls down the | 
| 198 | 
 slope but is deflected along the slope by rotation. It is found that | 
 slope but is deflected along the slope by rotation. It is found that | 
| 211 | 
 dynamics and mixing in oceanic canyons and ridges driven by large amplitude | 
 dynamics and mixing in oceanic canyons and ridges driven by large amplitude | 
| 212 | 
 barotropic tidal currents imposed through open boundary conditions. | 
 barotropic tidal currents imposed through open boundary conditions. | 
| 213 | 
  | 
  | 
| 214 | 
 Fig. ?.? shows the influence of cross-slope topographic variations on | 
 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope  | 
| 215 | 
  | 
 topographic variations on | 
| 216 | 
 internal wave breaking - the cross-slope velocity is in color, the density | 
 internal wave breaking - the cross-slope velocity is in color, the density | 
| 217 | 
 contoured. The internal waves are excited by application of open boundary | 
 contoured. The internal waves are excited by application of open boundary | 
| 218 | 
 conditions on the left.\ They propagate to the sloping boundary (represented | 
 conditions on the left. They propagate to the sloping boundary (represented | 
| 219 | 
 using MITgcm's finite volume spatial discretization) where they break under | 
 using MITgcm's finite volume spatial discretization) where they break under | 
| 220 | 
 nonhydrostatic dynamics. | 
 nonhydrostatic dynamics. | 
| 221 | 
  | 
  | 
| 229 | 
 `automatic adjoint compiler'. These can be used in parameter sensitivity and | 
 `automatic adjoint compiler'. These can be used in parameter sensitivity and | 
| 230 | 
 data assimilation studies. | 
 data assimilation studies. | 
| 231 | 
  | 
  | 
| 232 | 
 As one example of application of the MITgcm adjoint, Fig.E4 maps the | 
 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} | 
| 233 | 
 gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | 
 maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | 
| 234 | 
 of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $ | 
 of the overturning stream-function shown in figure \ref{fig:large-scale-circ} | 
| 235 | 
 \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is | 
 at 60$^{\circ }$N and $ | 
| 236 | 
  | 
 \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over | 
| 237 | 
  | 
 a 100 year period. We see that $J$ is | 
| 238 | 
 sensitive to heat fluxes over the Labrador Sea, one of the important sources | 
 sensitive to heat fluxes over the Labrador Sea, one of the important sources | 
| 239 | 
 of deep water for the thermohaline circulations. This calculation also | 
 of deep water for the thermohaline circulations. This calculation also | 
| 240 | 
 yields sensitivities to all other model parameters. | 
 yields sensitivities to all other model parameters. | 
| 248 | 
 An important application of MITgcm is in state estimation of the global | 
 An important application of MITgcm is in state estimation of the global | 
| 249 | 
 ocean circulation. An appropriately defined `cost function', which measures | 
 ocean circulation. An appropriately defined `cost function', which measures | 
| 250 | 
 the departure of the model from observations (both remotely sensed and | 
 the departure of the model from observations (both remotely sensed and | 
| 251 | 
 insitu) over an interval of time, is minimized by adjusting `control | 
 in-situ) over an interval of time, is minimized by adjusting `control | 
| 252 | 
 parameters' such as air-sea fluxes, the wind field, the initial conditions | 
 parameters' such as air-sea fluxes, the wind field, the initial conditions | 
| 253 | 
 etc. Figure ?.? shows an estimate of the time-mean surface elevation of the | 
 etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean | 
| 254 | 
 ocean obtained by bringing the model in to consistency with altimetric and | 
 surface elevation of the ocean obtained by bringing the model in to | 
| 255 | 
 in-situ observations over the period 1992-1997. | 
 consistency with altimetric and in-situ observations over the period | 
| 256 | 
  | 
 1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} | 
| 257 | 
  | 
  | 
| 258 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 259 | 
 \input{part1/globes_figure} | 
 \input{part1/globes_figure} | 
| 264 | 
 MITgcm is being used to study global biogeochemical cycles in the ocean. For | 
 MITgcm is being used to study global biogeochemical cycles in the ocean. For | 
| 265 | 
 example one can study the effects of interannual changes in meteorological | 
 example one can study the effects of interannual changes in meteorological | 
| 266 | 
 forcing and upper ocean circulation on the fluxes of carbon dioxide and | 
 forcing and upper ocean circulation on the fluxes of carbon dioxide and | 
| 267 | 
 oxygen between the ocean and atmosphere. The figure shows the annual air-sea | 
 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows  | 
| 268 | 
 flux of oxygen and its relation to density outcrops in the southern oceans | 
 the annual air-sea flux of oxygen and its relation to density outcrops in  | 
| 269 | 
 from a single year of a global, interannually varying simulation. | 
 the southern oceans from a single year of a global, interannually varying  | 
| 270 | 
  | 
 simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution | 
| 271 | 
  | 
 telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown). | 
| 272 | 
  | 
  | 
| 273 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 274 | 
 \input{part1/biogeo_figure} | 
 \input{part1/biogeo_figure} | 
| 276 | 
  | 
  | 
| 277 | 
 \subsection{Simulations of laboratory experiments} | 
 \subsection{Simulations of laboratory experiments} | 
| 278 | 
  | 
  | 
| 279 | 
 Figure ?.? shows MITgcm being used to simulate a laboratory experiment | 
 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  | 
| 280 | 
 enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An | 
 laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An | 
| 281 | 
 initially homogeneous tank of water ($1m$ in diameter) is driven from its | 
 initially homogeneous tank of water ($1m$ in diameter) is driven from its | 
| 282 | 
 free surface by a rotating heated disk. The combined action of mechanical | 
 free surface by a rotating heated disk. The combined action of mechanical | 
| 283 | 
 and thermal forcing creates a lens of fluid which becomes baroclinically | 
 and thermal forcing creates a lens of fluid which becomes baroclinically | 
| 284 | 
 unstable. The stratification and depth of penetration of the lens is | 
 unstable. The stratification and depth of penetration of the lens is | 
| 285 | 
 arrested by its instability in a process analogous to that whic sets the | 
 arrested by its instability in a process analogous to that which sets the | 
| 286 | 
 stratification of the ACC. | 
 stratification of the ACC. | 
| 287 | 
  | 
  | 
| 288 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 296 | 
  | 
  | 
| 297 | 
 To render atmosphere and ocean models from one dynamical core we exploit | 
 To render atmosphere and ocean models from one dynamical core we exploit | 
| 298 | 
 `isomorphisms' between equation sets that govern the evolution of the | 
 `isomorphisms' between equation sets that govern the evolution of the | 
| 299 | 
 respective fluids - see fig.4 | 
 respective fluids - see figure \ref{fig:isomorphic-equations}.  | 
| 300 | 
 \marginpar{ | 
 One system of hydrodynamical equations is written down | 
 | 
 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down | 
  | 
| 301 | 
 and encoded. The model variables have different interpretations depending on | 
 and encoded. The model variables have different interpretations depending on | 
| 302 | 
 whether the atmosphere or ocean is being studied. Thus, for example, the | 
 whether the atmosphere or ocean is being studied. Thus, for example, the | 
| 303 | 
 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | 
 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | 
| 304 | 
 modeling the atmosphere and height, $z$, if we are modeling the ocean. | 
 modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) | 
| 305 | 
  | 
 and height, $z$, if we are modeling the ocean (right hand side of figure | 
| 306 | 
  | 
 \ref{fig:isomorphic-equations}). | 
| 307 | 
  | 
  | 
| 308 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 309 | 
 \input{part1/zandpcoord_figure.tex} | 
 \input{part1/zandpcoord_figure.tex} | 
| 315 | 
 depend on $\theta $, $S$, and $p$. The equations that govern the evolution | 
 depend on $\theta $, $S$, and $p$. The equations that govern the evolution | 
| 316 | 
 of these fields, obtained by applying the laws of classical mechanics and | 
 of these fields, obtained by applying the laws of classical mechanics and | 
| 317 | 
 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | 
 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | 
| 318 | 
 a generic vertical coordinate, $r$, see fig.5 | 
 a generic vertical coordinate, $r$, so that the appropriate | 
| 319 | 
 \marginpar{ | 
 kinematic boundary conditions can be applied isomorphically | 
| 320 | 
 Fig.5 The vertical coordinate of model}: | 
 see figure \ref{fig:zandp-vert-coord}. | 
| 321 | 
  | 
  | 
| 322 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 323 | 
 \input{part1/vertcoord_figure.tex} | 
 \input{part1/vertcoord_figure.tex} | 
| 326 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 327 | 
 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} | 
 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} | 
| 328 | 
 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} | 
 \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} | 
| 329 | 
 \text{ horizontal mtm} | 
 \text{ horizontal mtm} \label{eq:horizontal_mtm} | 
| 330 | 
 \end{equation*} | 
 \end{equation*} | 
| 331 | 
  | 
  | 
| 332 | 
 \begin{equation*} | 
 \begin{equation} | 
| 333 | 
 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ | 
 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ | 
| 334 | 
 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ | 
 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ | 
| 335 | 
 vertical mtm} | 
 vertical mtm} \label{eq:vertical_mtm} | 
| 336 | 
 \end{equation*} | 
 \end{equation} | 
| 337 | 
  | 
  | 
| 338 | 
 \begin{equation} | 
 \begin{equation} | 
| 339 | 
 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ | 
 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ | 
| 340 | 
 \partial r}=0\text{ continuity}  \label{eq:continuous} | 
 \partial r}=0\text{ continuity}  \label{eq:continuity} | 
| 341 | 
 \end{equation} | 
 \end{equation} | 
| 342 | 
  | 
  | 
| 343 | 
 \begin{equation*} | 
 \begin{equation} | 
| 344 | 
 b=b(\theta ,S,r)\text{ equation of state} | 
 b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state} | 
| 345 | 
 \end{equation*} | 
 \end{equation} | 
| 346 | 
  | 
  | 
| 347 | 
 \begin{equation*} | 
 \begin{equation} | 
| 348 | 
 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} | 
 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} | 
| 349 | 
 \end{equation*} | 
 \label{eq:potential_temperature} | 
| 350 | 
  | 
 \end{equation} | 
| 351 | 
  | 
  | 
| 352 | 
 \begin{equation*} | 
 \begin{equation} | 
| 353 | 
 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} | 
 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} | 
| 354 | 
 \end{equation*} | 
 \label{eq:humidity_salt} | 
| 355 | 
  | 
 \end{equation} | 
| 356 | 
  | 
  | 
| 357 | 
 Here: | 
 Here: | 
| 358 | 
  | 
  | 
| 416 | 
 \end{equation*} | 
 \end{equation*} | 
| 417 | 
  | 
  | 
| 418 | 
 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by | 
 The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by | 
| 419 | 
 extensive `physics' packages for atmosphere and ocean described in Chapter 6. | 
 `physics' and forcing packages for atmosphere and ocean. These are described | 
| 420 | 
  | 
 in later chapters. | 
| 421 | 
  | 
  | 
| 422 | 
 \subsection{Kinematic Boundary conditions} | 
 \subsection{Kinematic Boundary conditions} | 
| 423 | 
  | 
  | 
| 424 | 
 \subsubsection{vertical} | 
 \subsubsection{vertical} | 
| 425 | 
  | 
  | 
| 426 | 
 at fixed and moving $r$ surfaces we set (see fig.5): | 
 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): | 
| 427 | 
  | 
  | 
| 428 | 
 \begin{equation} | 
 \begin{equation} | 
| 429 | 
 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} | 
 \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} | 
| 432 | 
  | 
  | 
| 433 | 
 \begin{equation} | 
 \begin{equation} | 
| 434 | 
 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ | 
 \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ | 
| 435 | 
 (oceansurface,bottomoftheatmosphere)}  \label{eq:movingbc} | 
 (ocean surface,bottom of the atmosphere)}  \label{eq:movingbc} | 
| 436 | 
 \end{equation} | 
 \end{equation} | 
| 437 | 
  | 
  | 
| 438 | 
 Here | 
 Here | 
| 454 | 
  | 
  | 
| 455 | 
 \subsection{Atmosphere} | 
 \subsection{Atmosphere} | 
| 456 | 
  | 
  | 
| 457 | 
 In the atmosphere, see fig.5, we interpret: | 
 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret: | 
| 458 | 
  | 
  | 
| 459 | 
 \begin{equation} | 
 \begin{equation} | 
| 460 | 
 r=p\text{ is the pressure}  \label{eq:atmos-r} | 
 r=p\text{ is the pressure}  \label{eq:atmos-r} | 
| 525 | 
 atmosphere)}  \label{eq:moving-bc-atmos} | 
 atmosphere)}  \label{eq:moving-bc-atmos} | 
| 526 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 527 | 
  | 
  | 
| 528 | 
 Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent | 
 Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})  | 
| 529 | 
 set of atmospheric equations which, for convenience, are written out in $p$ | 
 yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ | 
| 530 | 
 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). | 
 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). | 
| 531 | 
  | 
  | 
| 532 | 
 \subsection{Ocean} | 
 \subsection{Ocean} | 
| 562 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 563 | 
 where $\eta $ is the elevation of the free surface. | 
 where $\eta $ is the elevation of the free surface. | 
| 564 | 
  | 
  | 
| 565 | 
 Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations | 
 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set  | 
| 566 | 
  | 
 of oceanic equations | 
| 567 | 
 which, for convenience, are written out in $z$ coordinates in Appendix Ocean | 
 which, for convenience, are written out in $z$ coordinates in Appendix Ocean | 
| 568 | 
 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). | 
 - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). | 
| 569 | 
  | 
  | 
| 576 | 
 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | 
 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | 
| 577 | 
 \label{eq:phi-split} | 
 \label{eq:phi-split} | 
| 578 | 
 \end{equation} | 
 \end{equation} | 
| 579 | 
 and write eq(\ref{incompressible}a,b) in the form: | 
 and write eq(\ref{eq:incompressible}) in the form: | 
| 580 | 
  | 
  | 
| 581 | 
 \begin{equation} | 
 \begin{equation} | 
| 582 | 
 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi | 
 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi | 
| 609 | 
 \left.  | 
 \left.  | 
| 610 | 
 \begin{tabular}{l} | 
 \begin{tabular}{l} | 
| 611 | 
 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  | 
 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  | 
| 612 | 
 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $ | 
 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ | 
| 613 | 
 \\  | 
 \\  | 
| 614 | 
 $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ | 
 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ | 
| 615 | 
 \\  | 
 \\  | 
| 616 | 
 $+\mathcal{F}_{u}$ | 
 $+\mathcal{F}_{u}$ | 
| 617 | 
 \end{tabular} | 
 \end{tabular} | 
| 629 | 
 \left.  | 
 \left.  | 
| 630 | 
 \begin{tabular}{l} | 
 \begin{tabular}{l} | 
| 631 | 
 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  | 
 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  | 
| 632 | 
 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}  | 
 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}  | 
| 633 | 
 $ \\  | 
 $ \\  | 
| 634 | 
 $-\left\{ -2\Omega u\sin lat\right\} $ \\  | 
 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\  | 
| 635 | 
 $+\mathcal{F}_{v}$ | 
 $+\mathcal{F}_{v}$ | 
| 636 | 
 \end{tabular} | 
 \end{tabular} | 
| 637 | 
 \ \right\} \left\{  | 
 \ \right\} \left\{  | 
| 650 | 
 \begin{tabular}{l} | 
 \begin{tabular}{l} | 
| 651 | 
 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  | 
 $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  | 
| 652 | 
 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  | 
 $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  | 
| 653 | 
 ${+}\underline{{2\Omega u\cos lat}}$ \\  | 
 ${+}\underline{{2\Omega u\cos \varphi}}$ \\  | 
| 654 | 
 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$ | 
 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$ | 
| 655 | 
 \end{tabular} | 
 \end{tabular} | 
| 656 | 
 \ \right\} \left\{  | 
 \ \right\} \left\{  | 
| 664 | 
 \end{equation} | 
 \end{equation} | 
| 665 | 
 \qquad \qquad \qquad \qquad \qquad | 
 \qquad \qquad \qquad \qquad \qquad | 
| 666 | 
  | 
  | 
| 667 | 
 In the above `${r}$' is the distance from the center of the earth and `$lat$ | 
 In the above `${r}$' is the distance from the center of the earth and `$\varphi$ | 
| 668 | 
 ' is latitude. | 
 ' is latitude. | 
| 669 | 
  | 
  | 
| 670 | 
 Grad and div operators in spherical coordinates are defined in appendix | 
 Grad and div operators in spherical coordinates are defined in appendix | 
| 671 | 
 OPERATORS. | 
 OPERATORS. | 
 | 
 \marginpar{ | 
  | 
 | 
 Fig.6 Spherical polar coordinate system.} | 
  | 
| 672 | 
  | 
  | 
| 673 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 674 | 
 \input{part1/sphere_coord_figure.tex} | 
 \input{part1/sphere_coord_figure.tex} | 
| 687 | 
 the radius of the earth. | 
 the radius of the earth. | 
| 688 | 
  | 
  | 
| 689 | 
 \subsubsection{Hydrostatic and quasi-hydrostatic forms} | 
 \subsubsection{Hydrostatic and quasi-hydrostatic forms} | 
| 690 | 
  | 
 \label{sec:hydrostatic_and_quasi-hydrostatic_forms} | 
| 691 | 
  | 
  | 
| 692 | 
 These are discussed at length in Marshall et al (1997a). | 
 These are discussed at length in Marshall et al (1997a). | 
| 693 | 
  | 
  | 
| 701 | 
  | 
  | 
| 702 | 
 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | 
 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | 
| 703 | 
 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | 
 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | 
| 704 | 
 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | 
 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | 
| 705 | 
 contribution to the pressure field: only the terms underlined twice in Eqs. ( | 
 contribution to the pressure field: only the terms underlined twice in Eqs. ( | 
| 706 | 
 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero | 
 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero | 
| 707 | 
 and, simultaneously, the shallow atmosphere approximation is relaxed. In  | 
 and, simultaneously, the shallow atmosphere approximation is relaxed. In  | 
| 710 | 
 vertical momentum equation (\ref{eq:mom-w}) becomes: | 
 vertical momentum equation (\ref{eq:mom-w}) becomes: | 
| 711 | 
  | 
  | 
| 712 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 713 | 
 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat | 
 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi | 
| 714 | 
 \end{equation*} | 
 \end{equation*} | 
| 715 | 
 making a small correction to the hydrostatic pressure. | 
 making a small correction to the hydrostatic pressure. | 
| 716 | 
  | 
  | 
| 731 | 
 three dimensional elliptic equation must be solved subject to Neumann | 
 three dimensional elliptic equation must be solved subject to Neumann | 
| 732 | 
 boundary conditions (see below). It is important to note that use of the | 
 boundary conditions (see below). It is important to note that use of the | 
| 733 | 
 full \textbf{NH} does not admit any new `fast' waves in to the system - the | 
 full \textbf{NH} does not admit any new `fast' waves in to the system - the | 
| 734 | 
 incompressible condition eq(\ref{eq:continuous})c has already filtered out | 
 incompressible condition eq(\ref{eq:continuity}) has already filtered out | 
| 735 | 
 acoustic modes. It does, however, ensure that the gravity waves are treated | 
 acoustic modes. It does, however, ensure that the gravity waves are treated | 
| 736 | 
 accurately with an exact dispersion relation. The \textbf{NH} set has a | 
 accurately with an exact dispersion relation. The \textbf{NH} set has a | 
| 737 | 
 complete angular momentum principle and consistent energetics - see White | 
 complete angular momentum principle and consistent energetics - see White | 
| 780 | 
 \subsection{Solution strategy} | 
 \subsection{Solution strategy} | 
| 781 | 
  | 
  | 
| 782 | 
 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ | 
 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ | 
| 783 | 
 NH} models is summarized in Fig.7. | 
 NH} models is summarized in Figure \ref{fig:solution-strategy}. | 
| 784 | 
 \marginpar{ | 
 Under all dynamics, a 2-d elliptic equation is | 
 | 
 Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is | 
  | 
| 785 | 
 first solved to find the surface pressure and the hydrostatic pressure at | 
 first solved to find the surface pressure and the hydrostatic pressure at | 
| 786 | 
 any level computed from the weight of fluid above. Under \textbf{HPE} and  | 
 any level computed from the weight of fluid above. Under \textbf{HPE} and  | 
| 787 | 
 \textbf{QH} dynamics, the horizontal momentum equations are then stepped | 
 \textbf{QH} dynamics, the horizontal momentum equations are then stepped | 
| 795 | 
 %%CNHend | 
 %%CNHend | 
| 796 | 
  | 
  | 
| 797 | 
 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
| 798 | 
 course, some complication that goes with the inclusion of $\cos \phi \ $ | 
 course, some complication that goes with the inclusion of $\cos \varphi \ $ | 
| 799 | 
 Coriolis terms and the relaxation of the shallow atmosphere approximation. | 
 Coriolis terms and the relaxation of the shallow atmosphere approximation. | 
| 800 | 
 But this leads to negligible increase in computation. In \textbf{NH}, in | 
 But this leads to negligible increase in computation. In \textbf{NH}, in | 
| 801 | 
 contrast, one additional elliptic equation - a three-dimensional one - must | 
 contrast, one additional elliptic equation - a three-dimensional one - must | 
| 805 | 
 hydrostatic limit, is as computationally economic as the \textbf{HPEs}. | 
 hydrostatic limit, is as computationally economic as the \textbf{HPEs}. | 
| 806 | 
  | 
  | 
| 807 | 
 \subsection{Finding the pressure field} | 
 \subsection{Finding the pressure field} | 
| 808 | 
  | 
 \label{sec:finding_the_pressure_field} | 
| 809 | 
  | 
  | 
| 810 | 
 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the | 
 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the | 
| 811 | 
 pressure field must be obtained diagnostically. We proceed, as before, by | 
 pressure field must be obtained diagnostically. We proceed, as before, by | 
| 838 | 
  | 
  | 
| 839 | 
 \subsubsection{Surface pressure} | 
 \subsubsection{Surface pressure} | 
| 840 | 
  | 
  | 
| 841 | 
 The surface pressure equation can be obtained by integrating continuity, ( | 
 The surface pressure equation can be obtained by integrating continuity, | 
| 842 | 
 \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ | 
 (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$ | 
| 843 | 
  | 
  | 
| 844 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 845 | 
 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} | 
 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} | 
| 864 | 
 where we have incorporated a source term. | 
 where we have incorporated a source term. | 
| 865 | 
  | 
  | 
| 866 | 
 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | 
 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | 
| 867 | 
 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can | 
 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can | 
| 868 | 
 be written  | 
 be written  | 
| 869 | 
 \begin{equation} | 
 \begin{equation} | 
| 870 | 
 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) | 
 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) | 
| 872 | 
 \end{equation} | 
 \end{equation} | 
| 873 | 
 where $b_{s}$ is the buoyancy at the surface. | 
 where $b_{s}$ is the buoyancy at the surface. | 
| 874 | 
  | 
  | 
| 875 | 
 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref | 
 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref | 
| 876 | 
 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d | 
 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d | 
| 877 | 
 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free | 
 elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free | 
| 878 | 
 surface' and `rigid lid' approaches are available. | 
 surface' and `rigid lid' approaches are available. | 
| 879 | 
  | 
  | 
| 880 | 
 \subsubsection{Non-hydrostatic pressure} | 
 \subsubsection{Non-hydrostatic pressure} | 
| 881 | 
  | 
  | 
| 882 | 
 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ | 
 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding  | 
| 883 | 
 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation | 
 $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation | 
| 884 | 
 (\ref{incompressible}), we deduce that: | 
 (\ref{eq:continuity}), we deduce that: | 
| 885 | 
  | 
  | 
| 886 | 
 \begin{equation} | 
 \begin{equation} | 
| 887 | 
 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ | 
 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ | 
| 911 | 
 depending on the form chosen for the dissipative terms in the momentum | 
 depending on the form chosen for the dissipative terms in the momentum | 
| 912 | 
 equations - see below. | 
 equations - see below. | 
| 913 | 
  | 
  | 
| 914 | 
 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: | 
 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that: | 
| 915 | 
  | 
  | 
| 916 | 
 \begin{equation} | 
 \begin{equation} | 
| 917 | 
 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} | 
 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} | 
| 951 | 
 converges rapidly because $\phi _{nh}\ $is then only a small correction to | 
 converges rapidly because $\phi _{nh}\ $is then only a small correction to | 
| 952 | 
 the hydrostatic pressure field (see the discussion in Marshall et al, a,b). | 
 the hydrostatic pressure field (see the discussion in Marshall et al, a,b). | 
| 953 | 
  | 
  | 
| 954 | 
 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman}) | 
 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh}) | 
| 955 | 
 does not vanish at $r=R_{moving}$, and so refines the pressure there. | 
 does not vanish at $r=R_{moving}$, and so refines the pressure there. | 
| 956 | 
  | 
  | 
| 957 | 
 \subsection{Forcing/dissipation} | 
 \subsection{Forcing/dissipation} | 
| 959 | 
 \subsubsection{Forcing} | 
 \subsubsection{Forcing} | 
| 960 | 
  | 
  | 
| 961 | 
 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by | 
 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by | 
| 962 | 
 `physics packages' described in detail in chapter ??. | 
 `physics packages' and forcing packages. These are described later on. | 
| 963 | 
  | 
  | 
| 964 | 
 \subsubsection{Dissipation} | 
 \subsubsection{Dissipation} | 
| 965 | 
  | 
  | 
| 1007 | 
 \subsection{Vector invariant form} | 
 \subsection{Vector invariant form} | 
| 1008 | 
  | 
  | 
| 1009 | 
 For some purposes it is advantageous to write momentum advection in eq(\ref | 
 For some purposes it is advantageous to write momentum advection in eq(\ref | 
| 1010 | 
 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: | 
 {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: | 
| 1011 | 
  | 
  | 
| 1012 | 
 \begin{equation} | 
 \begin{equation} | 
| 1013 | 
 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} | 
 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} | 
| 1025 | 
  | 
  | 
| 1026 | 
 \subsection{Adjoint} | 
 \subsection{Adjoint} | 
| 1027 | 
  | 
  | 
| 1028 | 
 Tangent linear and adjoint counterparts of the forward model and described | 
 Tangent linear and adjoint counterparts of the forward model are described | 
| 1029 | 
 in Chapter 5. | 
 in Chapter 5. | 
| 1030 | 
  | 
  | 
| 1031 | 
 % $Header$ | 
 % $Header$ | 
| 1052 | 
 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | 
 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | 
| 1053 | 
 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  | 
 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  | 
| 1054 | 
 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | 
 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | 
| 1055 | 
 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is | 
 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is | 
| 1056 | 
 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp | 
 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp | 
| 1057 | 
 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref | 
 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref | 
| 1058 | 
 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $ | 
 {eq:atmos-heat}) is the first law of thermodynamics where internal energy $ | 
| 1147 | 
 The final form of the HPE's in p coordinates is then:  | 
 The final form of the HPE's in p coordinates is then:  | 
| 1148 | 
 \begin{eqnarray} | 
 \begin{eqnarray} | 
| 1149 | 
 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1150 | 
 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ | 
 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ | 
| 1151 | 
 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ | 
 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ | 
| 1152 | 
 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
| 1153 | 
 \partial p} &=&0 \\ | 
 \partial p} &=&0 \\ | 
| 1154 | 
 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ | 
 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ | 
| 1155 | 
 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime} | 
 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  | 
| 1156 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 1157 | 
  | 
  | 
| 1158 | 
 % $Header$ | 
 % $Header$ | 
| 1171 | 
 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
| 1172 | 
 &=&\epsilon _{nh}\mathcal{F}_{w} \\ | 
 &=&\epsilon _{nh}\mathcal{F}_{w} \\ | 
| 1173 | 
 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} | 
 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} | 
| 1174 | 
 _{h}+\frac{\partial w}{\partial z} &=&0 \\ | 
 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\ | 
| 1175 | 
 \rho &=&\rho (\theta ,S,p) \\ | 
 \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\ | 
| 1176 | 
 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ | 
 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\ | 
| 1177 | 
 \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:non-boussinesq} | 
 \frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt} | 
| 1178 | 
  | 
 \label{eq:non-boussinesq} | 
| 1179 | 
 \end{eqnarray} | 
 \end{eqnarray} | 
| 1180 | 
 These equations permit acoustics modes, inertia-gravity waves, | 
 These equations permit acoustics modes, inertia-gravity waves, | 
| 1181 | 
 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline | 
 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline | 
| 1182 | 
 mode. As written, they cannot be integrated forward consistently - if we | 
 mode. As written, they cannot be integrated forward consistently - if we | 
| 1183 | 
 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be | 
 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be | 
| 1184 | 
 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref | 
 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref | 
| 1194 | 
 \end{equation} | 
 \end{equation} | 
| 1195 | 
  | 
  | 
| 1196 | 
 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the | 
 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the | 
| 1197 | 
 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref | 
 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:  | 
 | 
 {eq-zns-cont} gives:  | 
  | 
| 1198 | 
 \begin{equation} | 
 \begin{equation} | 
| 1199 | 
 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
| 1200 | 
 v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure} | 
 v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure} | 
| 1384 | 
 and vertical direction respectively, are given by (see Fig.2) : | 
 and vertical direction respectively, are given by (see Fig.2) : | 
| 1385 | 
  | 
  | 
| 1386 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1387 | 
 u=r\cos \phi \frac{D\lambda }{Dt} | 
 u=r\cos \varphi \frac{D\lambda }{Dt} | 
| 1388 | 
 \end{equation*} | 
 \end{equation*} | 
| 1389 | 
  | 
  | 
| 1390 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1391 | 
 v=r\frac{D\phi }{Dt}\qquad | 
 v=r\frac{D\varphi }{Dt}\qquad | 
| 1392 | 
 \end{equation*} | 
 \end{equation*} | 
| 1393 | 
 $\qquad \qquad \qquad \qquad $ | 
 $\qquad \qquad \qquad \qquad $ | 
| 1394 | 
  | 
  | 
| 1396 | 
 \dot{r}=\frac{Dr}{Dt} | 
 \dot{r}=\frac{Dr}{Dt} | 
| 1397 | 
 \end{equation*} | 
 \end{equation*} | 
| 1398 | 
  | 
  | 
| 1399 | 
 Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial | 
 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial | 
| 1400 | 
 distance of the particle from the center of the earth, $\Omega $ is the | 
 distance of the particle from the center of the earth, $\Omega $ is the | 
| 1401 | 
 angular speed of rotation of the Earth and $D/Dt$ is the total derivative. | 
 angular speed of rotation of the Earth and $D/Dt$ is the total derivative. | 
| 1402 | 
  | 
  | 
| 1404 | 
 spherical coordinates: | 
 spherical coordinates: | 
| 1405 | 
  | 
  | 
| 1406 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1407 | 
 \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda } | 
 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } | 
| 1408 | 
 ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r} | 
 ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} | 
| 1409 | 
 \right) | 
 \right) | 
| 1410 | 
 \end{equation*} | 
 \end{equation*} | 
| 1411 | 
  | 
  | 
| 1412 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1413 | 
 \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial | 
 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial | 
| 1414 | 
 \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} | 
 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} | 
| 1415 | 
 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} | 
 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} | 
| 1416 | 
 \end{equation*} | 
 \end{equation*} | 
| 1417 | 
  | 
  |