| 1 |
% $Header$ |
% $Header$ |
| 2 |
% $Name$ |
% $Name$ |
|
%\usepackage{oldgerm} |
|
|
% I commented the following because it introduced excessive white space |
|
|
%\usepackage{palatcm} % better PDF |
|
|
% page headers and footers |
|
|
%\pagestyle{fancy} |
|
|
% referencing |
|
|
%% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
|
|
%% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
|
|
%% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
|
|
%% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
|
|
%% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
|
|
%% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
|
|
% stuff for psfrag |
|
|
%% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
|
|
%% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
|
|
% This allows numbering of subsubsections |
|
|
% This changes the the chapter title |
|
|
%\renewcommand{\chaptername}{Section} |
|
|
|
|
|
|
|
|
%%%% \documentclass[12pt]{book} |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
%%%% \usepackage{amsmath} |
|
|
%%%% \usepackage{html} |
|
|
%%%% \usepackage{epsfig} |
|
|
%%%% \usepackage{graphics,subfigure} |
|
|
%%%% \usepackage{array} |
|
|
%%%% \usepackage{multirow} |
|
|
%%%% \usepackage{fancyhdr} |
|
|
%%%% \usepackage{psfrag} |
|
|
|
|
|
%%%% %TCIDATA{OutputFilter=Latex.dll} |
|
|
%%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
|
|
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
|
|
%%%% %TCIDATA{Language=American English} |
|
|
|
|
|
%%%% \fancyhead{} |
|
|
%%%% \fancyhead[LO]{\slshape \rightmark} |
|
|
%%%% \fancyhead[RE]{\slshape \leftmark} |
|
|
%%%% \fancyhead[RO,LE]{\thepage} |
|
|
%%%% \fancyfoot[CO,CE]{\today} |
|
|
%%%% \fancyfoot[RO,LE]{ } |
|
|
%%%% \renewcommand{\headrulewidth}{0.4pt} |
|
|
%%%% \renewcommand{\footrulewidth}{0.4pt} |
|
|
%%%% \setcounter{secnumdepth}{3} |
|
|
%%%% \input{tcilatex} |
|
|
%%%% |
|
|
%%%% \begin{document} |
|
|
%%%% |
|
|
%%%% \tableofcontents |
|
|
%%%% |
|
|
%%%% \pagebreak |
|
| 3 |
|
|
| 4 |
%%%% \part{MIT GCM basics} |
%tci%\documentclass[12pt]{book} |
| 5 |
|
%tci%\usepackage{amsmath} |
| 6 |
|
%tci%\usepackage{html} |
| 7 |
|
%tci%\usepackage{epsfig} |
| 8 |
|
%tci%\usepackage{graphics,subfigure} |
| 9 |
|
%tci%\usepackage{array} |
| 10 |
|
%tci%\usepackage{multirow} |
| 11 |
|
%tci%\usepackage{fancyhdr} |
| 12 |
|
%tci%\usepackage{psfrag} |
| 13 |
|
|
| 14 |
|
%tci%%TCIDATA{OutputFilter=Latex.dll} |
| 15 |
|
%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
| 16 |
|
%tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
| 17 |
|
%tci%%TCIDATA{Language=American English} |
| 18 |
|
|
| 19 |
|
%tci%\fancyhead{} |
| 20 |
|
%tci%\fancyhead[LO]{\slshape \rightmark} |
| 21 |
|
%tci%\fancyhead[RE]{\slshape \leftmark} |
| 22 |
|
%tci%\fancyhead[RO,LE]{\thepage} |
| 23 |
|
%tci%\fancyfoot[CO,CE]{\today} |
| 24 |
|
%tci%\fancyfoot[RO,LE]{ } |
| 25 |
|
%tci%\renewcommand{\headrulewidth}{0.4pt} |
| 26 |
|
%tci%\renewcommand{\footrulewidth}{0.4pt} |
| 27 |
|
%tci%\setcounter{secnumdepth}{3} |
| 28 |
|
%tci%\input{tcilatex} |
| 29 |
|
|
| 30 |
|
%tci%\begin{document} |
| 31 |
|
|
| 32 |
|
%tci%\tableofcontents |
| 33 |
|
|
| 34 |
|
|
| 35 |
|
\part{MIT GCM basics} |
| 36 |
|
|
| 37 |
% Section: Overview |
% Section: Overview |
| 38 |
|
|
| 56 |
\begin{itemize} |
\begin{itemize} |
| 57 |
\item it can be used to study both atmospheric and oceanic phenomena; one |
\item it can be used to study both atmospheric and oceanic phenomena; one |
| 58 |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
| 59 |
models - see fig% |
models - see fig |
| 60 |
\marginpar{ |
\marginpar{ |
| 61 |
Fig.1 One model}\ref{fig:onemodel} |
Fig.1 One model}\ref{fig:onemodel} |
| 62 |
|
|
| 65 |
%% CNHend |
%% CNHend |
| 66 |
|
|
| 67 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
| 68 |
small-scale and large scale processes - see fig % |
small-scale and large scale processes - see fig |
| 69 |
\marginpar{ |
\marginpar{ |
| 70 |
Fig.2 All scales}\ref{fig:all-scales} |
Fig.2 All scales}\ref{fig:all-scales} |
| 71 |
|
|
| 75 |
|
|
| 76 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
| 77 |
discretization and support for the treatment of irregular geometries using |
discretization and support for the treatment of irregular geometries using |
| 78 |
orthogonal curvilinear grids and shaved cells - see fig % |
orthogonal curvilinear grids and shaved cells - see fig |
| 79 |
\marginpar{ |
\marginpar{ |
| 80 |
Fig.3 Finite volumes}\ref{fig:finite-volumes} |
Fig.3 Finite volumes}\ref{fig:finite-volumes} |
| 81 |
|
|
| 236 |
|
|
| 237 |
As one example of application of the MITgcm adjoint, Fig.E4 maps the |
As one example of application of the MITgcm adjoint, Fig.E4 maps the |
| 238 |
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
| 239 |
of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $% |
of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $ |
| 240 |
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is |
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is |
| 241 |
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
| 242 |
of deep water for the thermohaline circulations. This calculation also |
of deep water for the thermohaline circulations. This calculation also |
| 296 |
|
|
| 297 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
| 298 |
`isomorphisms' between equation sets that govern the evolution of the |
`isomorphisms' between equation sets that govern the evolution of the |
| 299 |
respective fluids - see fig.4% |
respective fluids - see fig.4 |
| 300 |
\marginpar{ |
\marginpar{ |
| 301 |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
| 302 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
| 314 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
| 315 |
of these fields, obtained by applying the laws of classical mechanics and |
of these fields, obtained by applying the laws of classical mechanics and |
| 316 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
| 317 |
a generic vertical coordinate, $r$, see fig.5% |
a generic vertical coordinate, $r$, see fig.5 |
| 318 |
\marginpar{ |
\marginpar{ |
| 319 |
Fig.5 The vertical coordinate of model}: |
Fig.5 The vertical coordinate of model}: |
| 320 |
|
|
| 323 |
%%CNHend |
%%CNHend |
| 324 |
|
|
| 325 |
\begin{equation*} |
\begin{equation*} |
| 326 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 327 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
| 328 |
\text{ horizontal mtm} |
\text{ horizontal mtm} |
| 329 |
\end{equation*} |
\end{equation*} |
| 330 |
|
|
| 331 |
\begin{equation*} |
\begin{equation*} |
| 332 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 333 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
| 334 |
vertical mtm} |
vertical mtm} |
| 335 |
\end{equation*} |
\end{equation*} |
| 336 |
|
|
| 337 |
\begin{equation} |
\begin{equation} |
| 338 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
| 339 |
\partial r}=0\text{ continuity} \label{eq:continuous} |
\partial r}=0\text{ continuity} \label{eq:continuous} |
| 340 |
\end{equation} |
\end{equation} |
| 341 |
|
|
| 363 |
\end{equation*} |
\end{equation*} |
| 364 |
|
|
| 365 |
\begin{equation*} |
\begin{equation*} |
| 366 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
| 367 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
| 368 |
\end{equation*} |
\end{equation*} |
| 369 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
| 370 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
| 371 |
is a unit vector in the vertical |
is a unit vector in the vertical |
| 372 |
|
|
| 400 |
\end{equation*} |
\end{equation*} |
| 401 |
|
|
| 402 |
\begin{equation*} |
\begin{equation*} |
| 403 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{% |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ |
| 404 |
\mathbf{v}} |
\mathbf{v}} |
| 405 |
\end{equation*} |
\end{equation*} |
| 406 |
|
|
| 445 |
|
|
| 446 |
\begin{equation} |
\begin{equation} |
| 447 |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
| 448 |
\end{equation}% |
\end{equation} |
| 449 |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
| 450 |
|
|
| 451 |
\subsection{Atmosphere} |
\subsection{Atmosphere} |
| 482 |
|
|
| 483 |
\begin{equation*} |
\begin{equation*} |
| 484 |
T\text{ is absolute temperature} |
T\text{ is absolute temperature} |
| 485 |
\end{equation*}% |
\end{equation*} |
| 486 |
\begin{equation*} |
\begin{equation*} |
| 487 |
p\text{ is the pressure} |
p\text{ is the pressure} |
| 488 |
\end{equation*}% |
\end{equation*} |
| 489 |
\begin{eqnarray*} |
\begin{eqnarray*} |
| 490 |
&&z\text{ is the height of the pressure surface} \\ |
&&z\text{ is the height of the pressure surface} \\ |
| 491 |
&&g\text{ is the acceleration due to gravity} |
&&g\text{ is the acceleration due to gravity} |
| 495 |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
| 496 |
\begin{equation} |
\begin{equation} |
| 497 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
| 498 |
\end{equation}% |
\end{equation} |
| 499 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
| 500 |
constant and $c_{p}$ the specific heat of air at constant pressure. |
constant and $c_{p}$ the specific heat of air at constant pressure. |
| 501 |
|
|
| 545 |
|
|
| 546 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
The surface of the ocean is given by: $R_{moving}=\eta $ |
| 547 |
|
|
| 548 |
The position of the resting free surface of the ocean is given by $% |
The position of the resting free surface of the ocean is given by $ |
| 549 |
R_{o}=Z_{o}=0$. |
R_{o}=Z_{o}=0$. |
| 550 |
|
|
| 551 |
Boundary conditions are: |
Boundary conditions are: |
| 553 |
\begin{eqnarray} |
\begin{eqnarray} |
| 554 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
| 555 |
\\ |
\\ |
| 556 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) % |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
| 557 |
\label{eq:moving-bc-ocean}} |
\label{eq:moving-bc-ocean}} |
| 558 |
\end{eqnarray} |
\end{eqnarray} |
| 559 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
| 570 |
\begin{equation} |
\begin{equation} |
| 571 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 572 |
\label{eq:phi-split} |
\label{eq:phi-split} |
| 573 |
\end{equation}% |
\end{equation} |
| 574 |
and write eq(\ref{incompressible}a,b) in the form: |
and write eq(\ref{incompressible}a,b) in the form: |
| 575 |
|
|
| 576 |
\begin{equation} |
\begin{equation} |
| 584 |
\end{equation} |
\end{equation} |
| 585 |
|
|
| 586 |
\begin{equation} |
\begin{equation} |
| 587 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
| 588 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 589 |
\end{equation} |
\end{equation} |
| 590 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 591 |
|
|
| 592 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref% |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
| 593 |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
| 594 |
terms in the momentum equations. In spherical coordinates they take the form% |
terms in the momentum equations. In spherical coordinates they take the form |
| 595 |
\footnote{% |
\footnote{ |
| 596 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
| 597 |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref% |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref |
| 598 |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
| 599 |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (% |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( |
| 600 |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
| 601 |
discussion: |
discussion: |
| 602 |
|
|
| 608 |
\\ |
\\ |
| 609 |
$-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ |
$-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ |
| 610 |
\\ |
\\ |
| 611 |
$+\mathcal{F}_{u}$% |
$+\mathcal{F}_{u}$ |
| 612 |
\end{tabular}% |
\end{tabular} |
| 613 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 614 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 615 |
\textit{advection} \\ |
\textit{advection} \\ |
| 616 |
\textit{metric} \\ |
\textit{metric} \\ |
| 617 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 618 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 619 |
\end{tabular}% |
\end{tabular} |
| 620 |
\ \right. \qquad \label{eq:gu-speherical} |
\ \right. \qquad \label{eq:gu-speherical} |
| 621 |
\end{equation} |
\end{equation} |
| 622 |
|
|
| 627 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} |
| 628 |
$ \\ |
$ \\ |
| 629 |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
| 630 |
$+\mathcal{F}_{v}$% |
$+\mathcal{F}_{v}$ |
| 631 |
\end{tabular}% |
\end{tabular} |
| 632 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 633 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 634 |
\textit{advection} \\ |
\textit{advection} \\ |
| 635 |
\textit{metric} \\ |
\textit{metric} \\ |
| 636 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 637 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 638 |
\end{tabular}% |
\end{tabular} |
| 639 |
\ \right. \qquad \label{eq:gv-spherical} |
\ \right. \qquad \label{eq:gv-spherical} |
| 640 |
\end{equation}% |
\end{equation} |
| 641 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 642 |
|
|
| 643 |
\begin{equation} |
\begin{equation} |
| 646 |
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
| 647 |
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
| 648 |
${+}\underline{{2\Omega u\cos lat}}$ \\ |
${+}\underline{{2\Omega u\cos lat}}$ \\ |
| 649 |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$% |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$ |
| 650 |
\end{tabular}% |
\end{tabular} |
| 651 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 652 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 653 |
\textit{advection} \\ |
\textit{advection} \\ |
| 654 |
\textit{metric} \\ |
\textit{metric} \\ |
| 655 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 656 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 657 |
\end{tabular}% |
\end{tabular} |
| 658 |
\ \right. \label{eq:gw-spherical} |
\ \right. \label{eq:gw-spherical} |
| 659 |
\end{equation}% |
\end{equation} |
| 660 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 661 |
|
|
| 662 |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
In the above `${r}$' is the distance from the center of the earth and `$lat$ |
| 663 |
' is latitude. |
' is latitude. |
| 664 |
|
|
| 665 |
Grad and div operators in spherical coordinates are defined in appendix |
Grad and div operators in spherical coordinates are defined in appendix |
| 666 |
OPERATORS.% |
OPERATORS. |
| 667 |
\marginpar{ |
\marginpar{ |
| 668 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
| 669 |
|
|
| 679 |
Coriolis force is treated approximately and the shallow atmosphere |
Coriolis force is treated approximately and the shallow atmosphere |
| 680 |
approximation is made.\ The MITgcm need not make the `traditional |
approximation is made.\ The MITgcm need not make the `traditional |
| 681 |
approximation'. To be able to support consistent non-hydrostatic forms the |
approximation'. To be able to support consistent non-hydrostatic forms the |
| 682 |
shallow atmosphere approximation can be relaxed - when dividing through by $% |
shallow atmosphere approximation can be relaxed - when dividing through by $ |
| 683 |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
| 684 |
the radius of the earth. |
the radius of the earth. |
| 685 |
|
|
| 692 |
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
| 693 |
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
| 694 |
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
| 695 |
computed at all other levels by integration of the hydrostatic relation, eq(% |
computed at all other levels by integration of the hydrostatic relation, eq( |
| 696 |
\ref{eq:hydrostatic}). |
\ref{eq:hydrostatic}). |
| 697 |
|
|
| 698 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
| 699 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
| 700 |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
| 701 |
contribution to the pressure field: only the terms underlined twice in Eqs. (% |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
| 702 |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
| 703 |
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
| 704 |
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
| 722 |
|
|
| 723 |
\paragraph{Non-hydrostatic Ocean} |
\paragraph{Non-hydrostatic Ocean} |
| 724 |
|
|
| 725 |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref% |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref |
| 726 |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
| 727 |
three dimensional elliptic equation must be solved subject to Neumann |
three dimensional elliptic equation must be solved subject to Neumann |
| 728 |
boundary conditions (see below). It is important to note that use of the |
boundary conditions (see below). It is important to note that use of the |
| 735 |
|
|
| 736 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
| 737 |
|
|
| 738 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{% |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
| 739 |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
| 740 |
(but only here) by: |
(but only here) by: |
| 741 |
|
|
| 742 |
\begin{equation} |
\begin{equation} |
| 743 |
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
| 744 |
\end{equation}% |
\end{equation} |
| 745 |
where $p_{hy}$ is the hydrostatic pressure. |
where $p_{hy}$ is the hydrostatic pressure. |
| 746 |
|
|
| 747 |
\subsubsection{Summary of equation sets supported by model} |
\subsubsection{Summary of equation sets supported by model} |
| 769 |
|
|
| 770 |
\subparagraph{Non-hydrostatic} |
\subparagraph{Non-hydrostatic} |
| 771 |
|
|
| 772 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
| 773 |
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref% |
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref |
| 774 |
{eq:ocean-salt}). |
{eq:ocean-salt}). |
| 775 |
|
|
| 776 |
\subsection{Solution strategy} |
\subsection{Solution strategy} |
| 777 |
|
|
| 778 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
| 779 |
NH} models is summarized in Fig.7.% |
NH} models is summarized in Fig.7. |
| 780 |
\marginpar{ |
\marginpar{ |
| 781 |
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
| 782 |
first solved to find the surface pressure and the hydrostatic pressure at |
first solved to find the surface pressure and the hydrostatic pressure at |
| 792 |
%%CNHend |
%%CNHend |
| 793 |
|
|
| 794 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 795 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \phi \ $ |
| 796 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
| 797 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
But this leads to negligible increase in computation. In \textbf{NH}, in |
| 798 |
contrast, one additional elliptic equation - a three-dimensional one - must |
contrast, one additional elliptic equation - a three-dimensional one - must |
| 816 |
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
| 817 |
|
|
| 818 |
\begin{equation*} |
\begin{equation*} |
| 819 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} |
| 820 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
| 821 |
\end{equation*} |
\end{equation*} |
| 822 |
and so |
and so |
| 834 |
|
|
| 835 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
| 836 |
|
|
| 837 |
The surface pressure equation can be obtained by integrating continuity, (% |
The surface pressure equation can be obtained by integrating continuity, ( |
| 838 |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
| 839 |
|
|
| 840 |
\begin{equation*} |
\begin{equation*} |
| 841 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
| 842 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
| 843 |
\end{equation*} |
\end{equation*} |
| 844 |
|
|
| 846 |
|
|
| 847 |
\begin{equation*} |
\begin{equation*} |
| 848 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
| 849 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
| 850 |
_{h}dr=0 |
_{h}dr=0 |
| 851 |
\end{equation*} |
\end{equation*} |
| 852 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
| 853 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
| 854 |
|
|
| 855 |
\begin{equation} |
\begin{equation} |
| 856 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
| 857 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
| 858 |
\label{eq:free-surface} |
\label{eq:free-surface} |
| 859 |
\end{equation}% |
\end{equation} |
| 860 |
where we have incorporated a source term. |
where we have incorporated a source term. |
| 861 |
|
|
| 862 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
| 865 |
\begin{equation} |
\begin{equation} |
| 866 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
| 867 |
\label{eq:phi-surf} |
\label{eq:phi-surf} |
| 868 |
\end{equation}% |
\end{equation} |
| 869 |
where $b_{s}$ is the buoyancy at the surface. |
where $b_{s}$ is the buoyancy at the surface. |
| 870 |
|
|
| 871 |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref% |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref |
| 872 |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
| 873 |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
| 874 |
surface' and `rigid lid' approaches are available. |
surface' and `rigid lid' approaches are available. |
| 875 |
|
|
| 876 |
\subsubsection{Non-hydrostatic pressure} |
\subsubsection{Non-hydrostatic pressure} |
| 877 |
|
|
| 878 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
| 879 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
| 880 |
(\ref{incompressible}), we deduce that: |
(\ref{incompressible}), we deduce that: |
| 881 |
|
|
| 882 |
\begin{equation} |
\begin{equation} |
| 883 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
| 884 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
| 885 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 886 |
\end{equation} |
\end{equation} |
| 887 |
|
|
| 901 |
\end{equation} |
\end{equation} |
| 902 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
| 903 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
| 904 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
| 905 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
| 906 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
| 907 |
depending on the form chosen for the dissipative terms in the momentum |
depending on the form chosen for the dissipative terms in the momentum |
| 918 |
\begin{equation*} |
\begin{equation*} |
| 919 |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
| 920 |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
| 921 |
\end{equation*}% |
\end{equation*} |
| 922 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
| 923 |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
| 924 |
exploit classical 3D potential theory and, by introducing an appropriately |
exploit classical 3D potential theory and, by introducing an appropriately |
| 925 |
chosen $\delta $-function sheet of `source-charge', replace the |
chosen $\delta $-function sheet of `source-charge', replace the |
| 926 |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
| 927 |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $% |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ |
| 928 |
\vec{\mathbf{F}}.$ By simultaneously setting $% |
\vec{\mathbf{F}}.$ By simultaneously setting $ |
| 929 |
\begin{array}{l} |
\begin{array}{l} |
| 930 |
\widehat{n}.\vec{\mathbf{F}}% |
\widehat{n}.\vec{\mathbf{F}} |
| 931 |
\end{array}% |
\end{array} |
| 932 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
| 933 |
self-consistent but simpler homogenized Elliptic problem is obtained: |
self-consistent but simpler homogenized Elliptic problem is obtained: |
| 934 |
|
|
| 935 |
\begin{equation*} |
\begin{equation*} |
| 936 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
| 937 |
\end{equation*}% |
\end{equation*} |
| 938 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
| 939 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
| 940 |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
| 941 |
|
|
| 942 |
\begin{equation} |
\begin{equation} |
| 965 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
| 966 |
|
|
| 967 |
\begin{equation} |
\begin{equation} |
| 968 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
| 969 |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
| 970 |
\end{equation} |
\end{equation} |
| 971 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
| 976 |
|
|
| 977 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
| 978 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
| 979 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $ |
| 980 |
\begin{equation} |
\begin{equation} |
| 981 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 982 |
_{h}^{4}(T,S) \label{eq:diffusion} |
_{h}^{4}(T,S) \label{eq:diffusion} |
| 983 |
\end{equation} |
\end{equation} |
| 984 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
| 985 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 986 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 987 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 992 |
\begin{array}{ccc} |
\begin{array}{ccc} |
| 993 |
K_{h} & 0 & 0 \\ |
K_{h} & 0 & 0 \\ |
| 994 |
0 & K_{h} & 0 \\ |
0 & K_{h} & 0 \\ |
| 995 |
0 & 0 & K_{v}% |
0 & 0 & K_{v} |
| 996 |
\end{array} |
\end{array} |
| 997 |
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
| 998 |
\end{equation} |
\end{equation} |
| 1002 |
|
|
| 1003 |
\subsection{Vector invariant form} |
\subsection{Vector invariant form} |
| 1004 |
|
|
| 1005 |
For some purposes it is advantageous to write momentum advection in eq(\ref% |
For some purposes it is advantageous to write momentum advection in eq(\ref |
| 1006 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
| 1007 |
|
|
| 1008 |
\begin{equation} |
\begin{equation} |
| 1009 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 1010 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 1011 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 1012 |
\label{eq:vi-identity} |
\label{eq:vi-identity} |
| 1013 |
\end{equation}% |
\end{equation} |
| 1014 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
| 1015 |
on their representation as a vorticity flux. Because gradients of coordinate |
on their representation as a vorticity flux. Because gradients of coordinate |
| 1016 |
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
| 1017 |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref% |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref |
| 1018 |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
| 1019 |
about the geometry is contained in the areas and lengths of the volumes used |
about the geometry is contained in the areas and lengths of the volumes used |
| 1020 |
to discretize the model. |
to discretize the model. |
| 1036 |
|
|
| 1037 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
| 1038 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1039 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1040 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
| 1041 |
\label{eq:atmos-mom} \\ |
\label{eq:atmos-mom} \\ |
| 1042 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
| 1043 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1044 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
| 1045 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
| 1046 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
| 1047 |
\end{eqnarray}% |
\end{eqnarray} |
| 1048 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 1049 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
| 1050 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
| 1051 |
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is |
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is |
| 1052 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
| 1053 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref% |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
| 1054 |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $% |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
| 1055 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
| 1056 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
| 1057 |
|
|
| 1058 |
It is convenient to cast the heat equation in terms of potential temperature |
It is convenient to cast the heat equation in terms of potential temperature |
| 1060 |
Differentiating (\ref{eq:atmos-eos}) we get: |
Differentiating (\ref{eq:atmos-eos}) we get: |
| 1061 |
\begin{equation*} |
\begin{equation*} |
| 1062 |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
| 1063 |
\end{equation*}% |
\end{equation*} |
| 1064 |
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $% |
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ |
| 1065 |
c_{p}=c_{v}+R$, gives: |
c_{p}=c_{v}+R$, gives: |
| 1066 |
\begin{equation} |
\begin{equation} |
| 1067 |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
| 1068 |
\label{eq-p-heat-interim} |
\label{eq-p-heat-interim} |
| 1069 |
\end{equation}% |
\end{equation} |
| 1070 |
Potential temperature is defined: |
Potential temperature is defined: |
| 1071 |
\begin{equation} |
\begin{equation} |
| 1072 |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
| 1073 |
\end{equation}% |
\end{equation} |
| 1074 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
| 1075 |
we will make use of the Exner function $\Pi (p)$ which defined by: |
we will make use of the Exner function $\Pi (p)$ which defined by: |
| 1076 |
\begin{equation} |
\begin{equation} |
| 1077 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
| 1078 |
\end{equation}% |
\end{equation} |
| 1079 |
The following relations will be useful and are easily expressed in terms of |
The following relations will be useful and are easily expressed in terms of |
| 1080 |
the Exner function: |
the Exner function: |
| 1081 |
\begin{equation*} |
\begin{equation*} |
| 1082 |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
| 1083 |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ |
| 1084 |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} |
| 1085 |
\frac{Dp}{Dt} |
\frac{Dp}{Dt} |
| 1086 |
\end{equation*}% |
\end{equation*} |
| 1087 |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
| 1088 |
|
|
| 1089 |
The heat equation is obtained by noting that |
The heat equation is obtained by noting that |
| 1098 |
\end{equation} |
\end{equation} |
| 1099 |
which is in conservative form. |
which is in conservative form. |
| 1100 |
|
|
| 1101 |
For convenience in the model we prefer to step forward (\ref% |
For convenience in the model we prefer to step forward (\ref |
| 1102 |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
| 1103 |
|
|
| 1104 |
\subsubsection{Boundary conditions} |
\subsubsection{Boundary conditions} |
| 1142 |
|
|
| 1143 |
The final form of the HPE's in p coordinates is then: |
The final form of the HPE's in p coordinates is then: |
| 1144 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1145 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1146 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1147 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
| 1148 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1149 |
\partial p} &=&0 \\ |
\partial p} &=&0 \\ |
| 1150 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
| 1151 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
| 1162 |
HPE's for the ocean written in z-coordinates are obtained. The |
HPE's for the ocean written in z-coordinates are obtained. The |
| 1163 |
non-Boussinesq equations for oceanic motion are: |
non-Boussinesq equations for oceanic motion are: |
| 1164 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1165 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1166 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1167 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1168 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
| 1169 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
| 1170 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
| 1171 |
\rho &=&\rho (\theta ,S,p) \\ |
\rho &=&\rho (\theta ,S,p) \\ |
| 1172 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
| 1173 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
| 1174 |
\end{eqnarray}% |
\end{eqnarray} |
| 1175 |
These equations permit acoustics modes, inertia-gravity waves, |
These equations permit acoustics modes, inertia-gravity waves, |
| 1176 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
| 1177 |
mode. As written, they cannot be integrated forward consistently - if we |
mode. As written, they cannot be integrated forward consistently - if we |
| 1178 |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
| 1179 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref% |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
| 1180 |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
| 1181 |
therefore necessary to manipulate the system as follows. Differentiating the |
therefore necessary to manipulate the system as follows. Differentiating the |
| 1182 |
EOS (equation of state) gives: |
EOS (equation of state) gives: |
| 1189 |
\end{equation} |
\end{equation} |
| 1190 |
|
|
| 1191 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
| 1192 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref% |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref |
| 1193 |
{eq-zns-cont} gives: |
{eq-zns-cont} gives: |
| 1194 |
\begin{equation} |
\begin{equation} |
| 1195 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1196 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
| 1197 |
\end{equation} |
\end{equation} |
| 1198 |
where we have used an approximation sign to indicate that we have assumed |
where we have used an approximation sign to indicate that we have assumed |
| 1200 |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
| 1201 |
can be explicitly integrated forward: |
can be explicitly integrated forward: |
| 1202 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1203 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1204 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1205 |
\label{eq-cns-hmom} \\ |
\label{eq-cns-hmom} \\ |
| 1206 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1207 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
| 1208 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1209 |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
| 1210 |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
| 1211 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
| 1219 |
`Boussinesq assumption'. The only term that then retains the full variation |
`Boussinesq assumption'. The only term that then retains the full variation |
| 1220 |
in $\rho $ is the gravitational acceleration: |
in $\rho $ is the gravitational acceleration: |
| 1221 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1222 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1223 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1224 |
\label{eq-zcb-hmom} \\ |
\label{eq-zcb-hmom} \\ |
| 1225 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1226 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1227 |
\label{eq-zcb-hydro} \\ |
\label{eq-zcb-hydro} \\ |
| 1228 |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{% |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ |
| 1229 |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
| 1230 |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
| 1231 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
| 1232 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
| 1233 |
\end{eqnarray} |
\end{eqnarray} |
| 1234 |
These equations still retain acoustic modes. But, because the |
These equations still retain acoustic modes. But, because the |
| 1235 |
``compressible'' terms are linearized, the pressure equation \ref% |
``compressible'' terms are linearized, the pressure equation \ref |
| 1236 |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
| 1237 |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
| 1238 |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
| 1239 |
EOS must have the same pressure dependency as the linearized pressure term, |
EOS must have the same pressure dependency as the linearized pressure term, |
| 1240 |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{% |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ |
| 1241 |
c_{s}^{2}}$, for consistency. |
c_{s}^{2}}$, for consistency. |
| 1242 |
|
|
| 1243 |
\subsubsection{`Anelastic' z-coordinate equations} |
\subsubsection{`Anelastic' z-coordinate equations} |
| 1244 |
|
|
| 1245 |
The anelastic approximation filters the acoustic mode by removing the |
The anelastic approximation filters the acoustic mode by removing the |
| 1246 |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}% |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} |
| 1247 |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}% |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} |
| 1248 |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
| 1249 |
continuity and EOS. A better solution is to change the dependency on |
continuity and EOS. A better solution is to change the dependency on |
| 1250 |
pressure in the EOS by splitting the pressure into a reference function of |
pressure in the EOS by splitting the pressure into a reference function of |
| 1255 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
| 1256 |
differentiating the EOS, the continuity equation then becomes: |
differentiating the EOS, the continuity equation then becomes: |
| 1257 |
\begin{equation*} |
\begin{equation*} |
| 1258 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ |
| 1259 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ |
| 1260 |
\frac{\partial w}{\partial z}=0 |
\frac{\partial w}{\partial z}=0 |
| 1261 |
\end{equation*} |
\end{equation*} |
| 1262 |
If the time- and space-scales of the motions of interest are longer than |
If the time- and space-scales of the motions of interest are longer than |
| 1263 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, |
| 1264 |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
| 1265 |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{% |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ |
| 1266 |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
| 1267 |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
| 1268 |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
| 1269 |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
| 1270 |
anelastic continuity equation: |
anelastic continuity equation: |
| 1271 |
\begin{equation} |
\begin{equation} |
| 1272 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- |
| 1273 |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
| 1274 |
\end{equation} |
\end{equation} |
| 1275 |
A slightly different route leads to the quasi-Boussinesq continuity equation |
A slightly different route leads to the quasi-Boussinesq continuity equation |
| 1276 |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+% |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ |
| 1277 |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }% |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } |
| 1278 |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
| 1279 |
\begin{equation} |
\begin{equation} |
| 1280 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1281 |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
| 1282 |
\end{equation} |
\end{equation} |
| 1283 |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
| 1286 |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
| 1287 |
\end{equation} |
\end{equation} |
| 1288 |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
| 1289 |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{% |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ |
| 1290 |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
| 1291 |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
| 1292 |
then: |
then: |
| 1293 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1294 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1295 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1296 |
\label{eq-zab-hmom} \\ |
\label{eq-zab-hmom} \\ |
| 1297 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1298 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1299 |
\label{eq-zab-hydro} \\ |
\label{eq-zab-hydro} \\ |
| 1300 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1301 |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
| 1302 |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
| 1303 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
| 1310 |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
| 1311 |
yield the ``truly'' incompressible Boussinesq equations: |
yield the ``truly'' incompressible Boussinesq equations: |
| 1312 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1313 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1314 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1315 |
\label{eq-ztb-hmom} \\ |
\label{eq-ztb-hmom} \\ |
| 1316 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} |
| 1317 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1318 |
\label{eq-ztb-hydro} \\ |
\label{eq-ztb-hydro} \\ |
| 1319 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 1332 |
density thus: |
density thus: |
| 1333 |
\begin{equation*} |
\begin{equation*} |
| 1334 |
\rho =\rho _{o}+\rho ^{\prime } |
\rho =\rho _{o}+\rho ^{\prime } |
| 1335 |
\end{equation*}% |
\end{equation*} |
| 1336 |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
| 1337 |
while the compressible effects in $\rho ^{\prime }$ are: |
while the compressible effects in $\rho ^{\prime }$ are: |
| 1338 |
\begin{equation*} |
\begin{equation*} |
| 1339 |
\rho _{o}=\rho _{c} |
\rho _{o}=\rho _{c} |
| 1340 |
\end{equation*}% |
\end{equation*} |
| 1341 |
\begin{equation*} |
\begin{equation*} |
| 1342 |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
| 1343 |
\end{equation*}% |
\end{equation*} |
| 1344 |
This then yields what we can call the semi-compressible Boussinesq |
This then yields what we can call the semi-compressible Boussinesq |
| 1345 |
equations: |
equations: |
| 1346 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1347 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1348 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ |
| 1349 |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
| 1350 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
| 1351 |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1356 |
\\ |
\\ |
| 1357 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
| 1358 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
| 1359 |
\end{eqnarray}% |
\end{eqnarray} |
| 1360 |
Note that the hydrostatic pressure of the resting fluid, including that |
Note that the hydrostatic pressure of the resting fluid, including that |
| 1361 |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
| 1362 |
dynamics. |
dynamics. |
| 1400 |
spherical coordinates: |
spherical coordinates: |
| 1401 |
|
|
| 1402 |
\begin{equation*} |
\begin{equation*} |
| 1403 |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda } |
| 1404 |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r} |
| 1405 |
\right) |
\right) |
| 1406 |
\end{equation*} |
\end{equation*} |
| 1407 |
|
|
| 1411 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
| 1412 |
\end{equation*} |
\end{equation*} |
| 1413 |
|
|
| 1414 |
%%%% \end{document} |
%tci%\end{document} |