| 34 |
|
|
| 35 |
% Section: Overview |
% Section: Overview |
| 36 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 37 |
This document provides the reader with the information necessary to |
This document provides the reader with the information necessary to |
| 38 |
carry out numerical experiments using MITgcm. It gives a comprehensive |
carry out numerical experiments using MITgcm. It gives a comprehensive |
| 39 |
description of the continuous equations on which the model is based, the |
description of the continuous equations on which the model is based, the |
| 58 |
models - see fig \ref{fig:onemodel} |
models - see fig \ref{fig:onemodel} |
| 59 |
|
|
| 60 |
%% CNHbegin |
%% CNHbegin |
| 61 |
\input{part1/one_model_figure} |
\input{s_overview/text/one_model_figure} |
| 62 |
%% CNHend |
%% CNHend |
| 63 |
|
|
| 64 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
| 65 |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
| 66 |
|
|
| 67 |
%% CNHbegin |
%% CNHbegin |
| 68 |
\input{part1/all_scales_figure} |
\input{s_overview/text/all_scales_figure} |
| 69 |
%% CNHend |
%% CNHend |
| 70 |
|
|
| 71 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
| 73 |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
| 74 |
|
|
| 75 |
%% CNHbegin |
%% CNHbegin |
| 76 |
\input{part1/fvol_figure} |
\input{s_overview/text/fvol_figure} |
| 77 |
%% CNHend |
%% CNHend |
| 78 |
|
|
| 79 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
| 136 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
| 137 |
give a feel for the wide range of problems that can be addressed using it. |
give a feel for the wide range of problems that can be addressed using it. |
| 138 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 139 |
\section{Illustrations of the model in action} |
\section{Illustrations of the model in action} |
| 140 |
|
|
| 141 |
MITgcm has been designed and used to model a wide range of phenomena, |
MITgcm has been designed and used to model a wide range of phenomena, |
| 171 |
there are no mountains or land-sea contrast. |
there are no mountains or land-sea contrast. |
| 172 |
|
|
| 173 |
%% CNHbegin |
%% CNHbegin |
| 174 |
\input{part1/cubic_eddies_figure} |
\input{s_overview/text/cubic_eddies_figure} |
| 175 |
%% CNHend |
%% CNHend |
| 176 |
|
|
| 177 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
| 187 |
latitude-longitude grid. Both grids are supported within the model. |
latitude-longitude grid. Both grids are supported within the model. |
| 188 |
|
|
| 189 |
%% CNHbegin |
%% CNHbegin |
| 190 |
\input{part1/hs_zave_u_figure} |
\input{s_overview/text/hs_zave_u_figure} |
| 191 |
%% CNHend |
%% CNHend |
| 192 |
|
|
| 193 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
| 218 |
is also clearly visible. |
is also clearly visible. |
| 219 |
|
|
| 220 |
%% CNHbegin |
%% CNHbegin |
| 221 |
\input{part1/atl6_figure} |
\input{s_overview/text/atl6_figure} |
| 222 |
%% CNHend |
%% CNHend |
| 223 |
|
|
| 224 |
|
|
| 240 |
circulation of the global ocean in Sverdrups. |
circulation of the global ocean in Sverdrups. |
| 241 |
|
|
| 242 |
%%CNHbegin |
%%CNHbegin |
| 243 |
\input{part1/global_circ_figure} |
\input{s_overview/text/global_circ_figure} |
| 244 |
%%CNHend |
%%CNHend |
| 245 |
|
|
| 246 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
| 263 |
instability of the along-slope current. |
instability of the along-slope current. |
| 264 |
|
|
| 265 |
%%CNHbegin |
%%CNHbegin |
| 266 |
\input{part1/convect_and_topo} |
\input{s_overview/text/convect_and_topo} |
| 267 |
%%CNHend |
%%CNHend |
| 268 |
|
|
| 269 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
| 285 |
nonhydrostatic dynamics. |
nonhydrostatic dynamics. |
| 286 |
|
|
| 287 |
%%CNHbegin |
%%CNHbegin |
| 288 |
\input{part1/boundary_forced_waves} |
\input{s_overview/text/boundary_forced_waves} |
| 289 |
%%CNHend |
%%CNHend |
| 290 |
|
|
| 291 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 308 |
yields sensitivities to all other model parameters. |
yields sensitivities to all other model parameters. |
| 309 |
|
|
| 310 |
%%CNHbegin |
%%CNHbegin |
| 311 |
\input{part1/adj_hf_ocean_figure} |
\input{s_overview/text/adj_hf_ocean_figure} |
| 312 |
%%CNHend |
%%CNHend |
| 313 |
|
|
| 314 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
| 329 |
1992-1997. |
1992-1997. |
| 330 |
|
|
| 331 |
%% CNHbegin |
%% CNHbegin |
| 332 |
\input{part1/assim_figure} |
\input{s_overview/text/assim_figure} |
| 333 |
%% CNHend |
%% CNHend |
| 334 |
|
|
| 335 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
| 349 |
shown). |
shown). |
| 350 |
|
|
| 351 |
%%CNHbegin |
%%CNHbegin |
| 352 |
\input{part1/biogeo_figure} |
\input{s_overview/text/biogeo_figure} |
| 353 |
%%CNHend |
%%CNHend |
| 354 |
|
|
| 355 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
| 367 |
stratification of the ACC. |
stratification of the ACC. |
| 368 |
|
|
| 369 |
%%CNHbegin |
%%CNHbegin |
| 370 |
\input{part1/lab_figure} |
\input{s_overview/text/lab_figure} |
| 371 |
%%CNHend |
%%CNHend |
| 372 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 373 |
\section{Continuous equations in `r' coordinates} |
\section{Continuous equations in `r' coordinates} |
| 374 |
\begin{rawhtml} |
\begin{rawhtml} |
| 375 |
<!-- CMIREDIR:z-p_isomorphism: --> |
<!-- CMIREDIR:z-p_isomorphism: --> |
| 387 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
| 388 |
|
|
| 389 |
%%CNHbegin |
%%CNHbegin |
| 390 |
\input{part1/zandpcoord_figure.tex} |
\input{s_overview/text/zandpcoord_figure.tex} |
| 391 |
%%CNHend |
%%CNHend |
| 392 |
|
|
| 393 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
| 401 |
see figure \ref{fig:zandp-vert-coord}. |
see figure \ref{fig:zandp-vert-coord}. |
| 402 |
|
|
| 403 |
%%CNHbegin |
%%CNHbegin |
| 404 |
\input{part1/vertcoord_figure.tex} |
\input{s_overview/text/vertcoord_figure.tex} |
| 405 |
%%CNHend |
%%CNHend |
| 406 |
|
|
| 407 |
\begin{equation} |
\begin{equation} |
| 652 |
|
|
| 653 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 654 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
| 655 |
|
\label{sec:all_hydrostatic_forms} |
| 656 |
\begin{rawhtml} |
\begin{rawhtml} |
| 657 |
<!-- CMIREDIR:non_hydrostatic: --> |
<!-- CMIREDIR:non_hydrostatic: --> |
| 658 |
\end{rawhtml} |
\end{rawhtml} |
| 761 |
OPERATORS. |
OPERATORS. |
| 762 |
|
|
| 763 |
%%CNHbegin |
%%CNHbegin |
| 764 |
\input{part1/sphere_coord_figure.tex} |
\input{s_overview/text/sphere_coord_figure.tex} |
| 765 |
%%CNHend |
%%CNHend |
| 766 |
|
|
| 767 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
| 882 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
| 883 |
|
|
| 884 |
%%CNHbegin |
%%CNHbegin |
| 885 |
\input{part1/solution_strategy_figure.tex} |
\input{s_overview/text/solution_strategy_figure.tex} |
| 886 |
%%CNHend |
%%CNHend |
| 887 |
|
|
| 888 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 1120 |
Tangent linear and adjoint counterparts of the forward model are described |
Tangent linear and adjoint counterparts of the forward model are described |
| 1121 |
in Chapter 5. |
in Chapter 5. |
| 1122 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 1123 |
\section{Appendix ATMOSPHERE} |
\section{Appendix ATMOSPHERE} |
| 1124 |
|
|
| 1125 |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
| 1139 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
| 1140 |
\end{eqnarray} |
\end{eqnarray} |
| 1141 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 1142 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
surfaces) component of velocity, $\frac{D}{Dt}=\frac{\partial}{\partial t} |
| 1143 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
+\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ |
| 1144 |
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is |
is the total derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, |
| 1145 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
$\phi =gz$ is the geopotential, $\alpha =1/\rho $ is the specific volume, |
| 1146 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
$\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate. |
| 1147 |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
Equation(\ref {eq:atmos-heat}) is the first law of thermodynamics where internal |
| 1148 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
energy $e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass |
| 1149 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
and $p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
| 1150 |
|
|
| 1151 |
It is convenient to cast the heat equation in terms of potential temperature |
It is convenient to cast the heat equation in terms of potential temperature |
| 1152 |
$\theta $ so that it looks more like a generic conservation law. |
$\theta $ so that it looks more like a generic conservation law. |
| 1246 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } |
| 1247 |
\end{eqnarray} |
\end{eqnarray} |
| 1248 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 1249 |
\section{Appendix OCEAN} |
\section{Appendix OCEAN} |
| 1250 |
|
|
| 1251 |
\subsection{Equations of motion for the ocean} |
\subsection{Equations of motion for the ocean} |
| 1460 |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
| 1461 |
community and referred to as the primitive equations (HPE). |
community and referred to as the primitive equations (HPE). |
| 1462 |
|
|
|
% $Header$ |
|
|
% $Name$ |
|
|
|
|
| 1463 |
\section{Appendix:OPERATORS} |
\section{Appendix:OPERATORS} |
| 1464 |
|
|
| 1465 |
\subsection{Coordinate systems} |
\subsection{Coordinate systems} |