| 61 |
models - see fig \ref{fig:onemodel} |
models - see fig \ref{fig:onemodel} |
| 62 |
|
|
| 63 |
%% CNHbegin |
%% CNHbegin |
| 64 |
\input{part1/one_model_figure} |
\input{s_overview/text/one_model_figure} |
| 65 |
%% CNHend |
%% CNHend |
| 66 |
|
|
| 67 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
| 68 |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
| 69 |
|
|
| 70 |
%% CNHbegin |
%% CNHbegin |
| 71 |
\input{part1/all_scales_figure} |
\input{s_overview/text/all_scales_figure} |
| 72 |
%% CNHend |
%% CNHend |
| 73 |
|
|
| 74 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
| 76 |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
| 77 |
|
|
| 78 |
%% CNHbegin |
%% CNHbegin |
| 79 |
\input{part1/fvol_figure} |
\input{s_overview/text/fvol_figure} |
| 80 |
%% CNHend |
%% CNHend |
| 81 |
|
|
| 82 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
| 87 |
computational platforms. |
computational platforms. |
| 88 |
\end{itemize} |
\end{itemize} |
| 89 |
|
|
| 90 |
|
|
| 91 |
Key publications reporting on and charting the development of the model are |
Key publications reporting on and charting the development of the model are |
| 92 |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}: |
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04} |
| 93 |
|
(an overview on the model formulation can also be found in \cite{adcroft:04c}): |
| 94 |
|
|
| 95 |
\begin{verbatim} |
\begin{verbatim} |
| 96 |
Hill, C. and J. Marshall, (1995) |
Hill, C. and J. Marshall, (1995) |
| 177 |
there are no mountains or land-sea contrast. |
there are no mountains or land-sea contrast. |
| 178 |
|
|
| 179 |
%% CNHbegin |
%% CNHbegin |
| 180 |
\input{part1/cubic_eddies_figure} |
\input{s_overview/text/cubic_eddies_figure} |
| 181 |
%% CNHend |
%% CNHend |
| 182 |
|
|
| 183 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
| 193 |
latitude-longitude grid. Both grids are supported within the model. |
latitude-longitude grid. Both grids are supported within the model. |
| 194 |
|
|
| 195 |
%% CNHbegin |
%% CNHbegin |
| 196 |
\input{part1/hs_zave_u_figure} |
\input{s_overview/text/hs_zave_u_figure} |
| 197 |
%% CNHend |
%% CNHend |
| 198 |
|
|
| 199 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
| 224 |
is also clearly visible. |
is also clearly visible. |
| 225 |
|
|
| 226 |
%% CNHbegin |
%% CNHbegin |
| 227 |
\input{part1/atl6_figure} |
\input{s_overview/text/atl6_figure} |
| 228 |
%% CNHend |
%% CNHend |
| 229 |
|
|
| 230 |
|
|
| 246 |
circulation of the global ocean in Sverdrups. |
circulation of the global ocean in Sverdrups. |
| 247 |
|
|
| 248 |
%%CNHbegin |
%%CNHbegin |
| 249 |
\input{part1/global_circ_figure} |
\input{s_overview/text/global_circ_figure} |
| 250 |
%%CNHend |
%%CNHend |
| 251 |
|
|
| 252 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
| 269 |
instability of the along-slope current. |
instability of the along-slope current. |
| 270 |
|
|
| 271 |
%%CNHbegin |
%%CNHbegin |
| 272 |
\input{part1/convect_and_topo} |
\input{s_overview/text/convect_and_topo} |
| 273 |
%%CNHend |
%%CNHend |
| 274 |
|
|
| 275 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
| 291 |
nonhydrostatic dynamics. |
nonhydrostatic dynamics. |
| 292 |
|
|
| 293 |
%%CNHbegin |
%%CNHbegin |
| 294 |
\input{part1/boundary_forced_waves} |
\input{s_overview/text/boundary_forced_waves} |
| 295 |
%%CNHend |
%%CNHend |
| 296 |
|
|
| 297 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 314 |
yields sensitivities to all other model parameters. |
yields sensitivities to all other model parameters. |
| 315 |
|
|
| 316 |
%%CNHbegin |
%%CNHbegin |
| 317 |
\input{part1/adj_hf_ocean_figure} |
\input{s_overview/text/adj_hf_ocean_figure} |
| 318 |
%%CNHend |
%%CNHend |
| 319 |
|
|
| 320 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
| 335 |
1992-1997. |
1992-1997. |
| 336 |
|
|
| 337 |
%% CNHbegin |
%% CNHbegin |
| 338 |
\input{part1/assim_figure} |
\input{s_overview/text/assim_figure} |
| 339 |
%% CNHend |
%% CNHend |
| 340 |
|
|
| 341 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
| 355 |
shown). |
shown). |
| 356 |
|
|
| 357 |
%%CNHbegin |
%%CNHbegin |
| 358 |
\input{part1/biogeo_figure} |
\input{s_overview/text/biogeo_figure} |
| 359 |
%%CNHend |
%%CNHend |
| 360 |
|
|
| 361 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
| 373 |
stratification of the ACC. |
stratification of the ACC. |
| 374 |
|
|
| 375 |
%%CNHbegin |
%%CNHbegin |
| 376 |
\input{part1/lab_figure} |
\input{s_overview/text/lab_figure} |
| 377 |
%%CNHend |
%%CNHend |
| 378 |
|
|
| 379 |
% $Header$ |
% $Header$ |
| 396 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
| 397 |
|
|
| 398 |
%%CNHbegin |
%%CNHbegin |
| 399 |
\input{part1/zandpcoord_figure.tex} |
\input{s_overview/text/zandpcoord_figure.tex} |
| 400 |
%%CNHend |
%%CNHend |
| 401 |
|
|
| 402 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
| 410 |
see figure \ref{fig:zandp-vert-coord}. |
see figure \ref{fig:zandp-vert-coord}. |
| 411 |
|
|
| 412 |
%%CNHbegin |
%%CNHbegin |
| 413 |
\input{part1/vertcoord_figure.tex} |
\input{s_overview/text/vertcoord_figure.tex} |
| 414 |
%%CNHend |
%%CNHend |
| 415 |
|
|
| 416 |
\begin{equation} |
\begin{equation} |
| 661 |
|
|
| 662 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 663 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
| 664 |
|
\label{sec:all_hydrostatic_forms} |
| 665 |
\begin{rawhtml} |
\begin{rawhtml} |
| 666 |
<!-- CMIREDIR:non_hydrostatic: --> |
<!-- CMIREDIR:non_hydrostatic: --> |
| 667 |
\end{rawhtml} |
\end{rawhtml} |
| 770 |
OPERATORS. |
OPERATORS. |
| 771 |
|
|
| 772 |
%%CNHbegin |
%%CNHbegin |
| 773 |
\input{part1/sphere_coord_figure.tex} |
\input{s_overview/text/sphere_coord_figure.tex} |
| 774 |
%%CNHend |
%%CNHend |
| 775 |
|
|
| 776 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
| 891 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
| 892 |
|
|
| 893 |
%%CNHbegin |
%%CNHbegin |
| 894 |
\input{part1/solution_strategy_figure.tex} |
\input{s_overview/text/solution_strategy_figure.tex} |
| 895 |
%%CNHend |
%%CNHend |
| 896 |
|
|
| 897 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |