| 61 | 
 models - see fig \ref{fig:onemodel} | 
 models - see fig \ref{fig:onemodel} | 
| 62 | 
  | 
  | 
| 63 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 64 | 
 \input{part1/one_model_figure} | 
 \input{s_overview/text/one_model_figure} | 
| 65 | 
 %% CNHend | 
 %% CNHend | 
| 66 | 
  | 
  | 
| 67 | 
 \item it has a non-hydrostatic capability and so can be used to study both | 
 \item it has a non-hydrostatic capability and so can be used to study both | 
| 68 | 
 small-scale and large scale processes - see fig \ref{fig:all-scales} | 
 small-scale and large scale processes - see fig \ref{fig:all-scales} | 
| 69 | 
  | 
  | 
| 70 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 71 | 
 \input{part1/all_scales_figure} | 
 \input{s_overview/text/all_scales_figure} | 
| 72 | 
 %% CNHend | 
 %% CNHend | 
| 73 | 
  | 
  | 
| 74 | 
 \item finite volume techniques are employed yielding an intuitive | 
 \item finite volume techniques are employed yielding an intuitive | 
| 76 | 
 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} | 
 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} | 
| 77 | 
  | 
  | 
| 78 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 79 | 
 \input{part1/fvol_figure} | 
 \input{s_overview/text/fvol_figure} | 
| 80 | 
 %% CNHend | 
 %% CNHend | 
| 81 | 
  | 
  | 
| 82 | 
 \item tangent linear and adjoint counterparts are automatically maintained | 
 \item tangent linear and adjoint counterparts are automatically maintained | 
| 87 | 
 computational platforms. | 
 computational platforms. | 
| 88 | 
 \end{itemize} | 
 \end{itemize} | 
| 89 | 
  | 
  | 
| 90 | 
  | 
  | 
| 91 | 
 Key publications reporting on and charting the development of the model are | 
 Key publications reporting on and charting the development of the model are | 
| 92 | 
 \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}: | 
 \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04} | 
| 93 | 
  | 
 (an overview on the model formulation can also be found in \cite{adcroft:04c}): | 
| 94 | 
  | 
  | 
| 95 | 
 \begin{verbatim} | 
 \begin{verbatim} | 
| 96 | 
 Hill, C. and J. Marshall, (1995) | 
 Hill, C. and J. Marshall, (1995) | 
| 167 | 
  | 
  | 
| 168 | 
 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
| 169 | 
 temperature field obtained using the atmospheric isomorph of MITgcm run at | 
 temperature field obtained using the atmospheric isomorph of MITgcm run at | 
| 170 | 
 2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
 $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
| 171 | 
 (blue) and warm air along an equatorial band (red). Fully developed | 
 (blue) and warm air along an equatorial band (red). Fully developed | 
| 172 | 
 baroclinic eddies spawned in the northern hemisphere storm track are | 
 baroclinic eddies spawned in the northern hemisphere storm track are | 
| 173 | 
 evident. There are no mountains or land-sea contrast in this calculation, | 
 evident. There are no mountains or land-sea contrast in this calculation, | 
| 177 | 
 there are no mountains or land-sea contrast. | 
 there are no mountains or land-sea contrast. | 
| 178 | 
  | 
  | 
| 179 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 180 | 
 \input{part1/cubic_eddies_figure} | 
 \input{s_overview/text/cubic_eddies_figure} | 
| 181 | 
 %% CNHend | 
 %% CNHend | 
| 182 | 
  | 
  | 
| 183 | 
 As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
 As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
| 193 | 
 latitude-longitude grid. Both grids are supported within the model. | 
 latitude-longitude grid. Both grids are supported within the model. | 
| 194 | 
  | 
  | 
| 195 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 196 | 
 \input{part1/hs_zave_u_figure} | 
 \input{s_overview/text/hs_zave_u_figure} | 
| 197 | 
 %% CNHend | 
 %% CNHend | 
| 198 | 
  | 
  | 
| 199 | 
 \subsection{Ocean gyres} | 
 \subsection{Ocean gyres} | 
| 212 | 
 increased until the baroclinic instability process is resolved, numerical | 
 increased until the baroclinic instability process is resolved, numerical | 
| 213 | 
 solutions of a different and much more realistic kind, can be obtained. | 
 solutions of a different and much more realistic kind, can be obtained. | 
| 214 | 
  | 
  | 
| 215 | 
 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity  | 
 Figure \ref{fig:ocean-gyres} shows the surface temperature and | 
| 216 | 
 field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal  | 
 velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ | 
| 217 | 
 resolution on a $lat-lon$ | 
 horizontal resolution on a \textit{lat-lon} grid in which the pole has | 
| 218 | 
 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator | 
 been rotated by $90^{\circ }$ on to the equator (to avoid the | 
| 219 | 
 (to avoid the converging of meridian in northern latitudes). 21 vertical | 
 converging of meridian in northern latitudes). 21 vertical levels are | 
| 220 | 
 levels are used in the vertical with a `lopped cell' representation of | 
 used in the vertical with a `lopped cell' representation of | 
| 221 | 
 topography. The development and propagation of anomalously warm and cold | 
 topography. The development and propagation of anomalously warm and | 
| 222 | 
 eddies can be clearly seen in the Gulf Stream region. The transport of | 
 cold eddies can be clearly seen in the Gulf Stream region. The | 
| 223 | 
 warm water northward by the mean flow of the Gulf Stream is also clearly | 
 transport of warm water northward by the mean flow of the Gulf Stream | 
| 224 | 
 visible. | 
 is also clearly visible. | 
| 225 | 
  | 
  | 
| 226 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 227 | 
 \input{part1/atl6_figure} | 
 \input{s_overview/text/atl6_figure} | 
| 228 | 
 %% CNHend | 
 %% CNHend | 
| 229 | 
  | 
  | 
| 230 | 
  | 
  | 
| 233 | 
 <!-- CMIREDIR:global_ocean_circulation: --> | 
 <!-- CMIREDIR:global_ocean_circulation: --> | 
| 234 | 
 \end{rawhtml} | 
 \end{rawhtml} | 
| 235 | 
  | 
  | 
| 236 | 
 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  | 
 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean | 
| 237 | 
 the surface of a 4$^{\circ }$ | 
 currents at the surface of a $4^{\circ }$ global ocean model run with | 
| 238 | 
 global ocean model run with 15 vertical levels. Lopped cells are used to | 
 15 vertical levels. Lopped cells are used to represent topography on a | 
| 239 | 
 represent topography on a regular $lat-lon$ grid extending from 70$^{\circ | 
 regular \textit{lat-lon} grid extending from $70^{\circ }N$ to | 
| 240 | 
 }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with | 
 $70^{\circ }S$. The model is driven using monthly-mean winds with | 
| 241 | 
 mixed boundary conditions on temperature and salinity at the surface. The | 
 mixed boundary conditions on temperature and salinity at the surface. | 
| 242 | 
 transfer properties of ocean eddies, convection and mixing is parameterized | 
 The transfer properties of ocean eddies, convection and mixing is | 
| 243 | 
 in this model. | 
 parameterized in this model. | 
| 244 | 
  | 
  | 
| 245 | 
 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning  | 
 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning  | 
| 246 | 
 circulation of the global ocean in Sverdrups. | 
 circulation of the global ocean in Sverdrups. | 
| 247 | 
  | 
  | 
| 248 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 249 | 
 \input{part1/global_circ_figure} | 
 \input{s_overview/text/global_circ_figure} | 
| 250 | 
 %%CNHend | 
 %%CNHend | 
| 251 | 
  | 
  | 
| 252 | 
 \subsection{Convection and mixing over topography} | 
 \subsection{Convection and mixing over topography} | 
| 269 | 
 instability of the along-slope current. | 
 instability of the along-slope current. | 
| 270 | 
  | 
  | 
| 271 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 272 | 
 \input{part1/convect_and_topo} | 
 \input{s_overview/text/convect_and_topo} | 
| 273 | 
 %%CNHend | 
 %%CNHend | 
| 274 | 
  | 
  | 
| 275 | 
 \subsection{Boundary forced internal waves} | 
 \subsection{Boundary forced internal waves} | 
| 291 | 
 nonhydrostatic dynamics. | 
 nonhydrostatic dynamics. | 
| 292 | 
  | 
  | 
| 293 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 294 | 
 \input{part1/boundary_forced_waves} | 
 \input{s_overview/text/boundary_forced_waves} | 
| 295 | 
 %%CNHend | 
 %%CNHend | 
| 296 | 
  | 
  | 
| 297 | 
 \subsection{Parameter sensitivity using the adjoint of MITgcm} | 
 \subsection{Parameter sensitivity using the adjoint of MITgcm} | 
| 303 | 
 `automatic adjoint compiler'. These can be used in parameter sensitivity and | 
 `automatic adjoint compiler'. These can be used in parameter sensitivity and | 
| 304 | 
 data assimilation studies. | 
 data assimilation studies. | 
| 305 | 
  | 
  | 
| 306 | 
 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} | 
 As one example of application of the MITgcm adjoint, Figure | 
| 307 | 
 maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | 
 \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial | 
| 308 | 
 of the overturning stream-function shown in figure \ref{fig:large-scale-circ} | 
   \mathcal{H}}$where $J$ is the magnitude of the overturning | 
| 309 | 
 at 60$^{\circ }$N and $ | 
 stream-function shown in figure \ref{fig:large-scale-circ} at | 
| 310 | 
 \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over | 
 $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local | 
| 311 | 
 a 100 year period. We see that $J$ is | 
 air-sea heat flux over a 100 year period. We see that $J$ is sensitive | 
| 312 | 
 sensitive to heat fluxes over the Labrador Sea, one of the important sources | 
 to heat fluxes over the Labrador Sea, one of the important sources of | 
| 313 | 
 of deep water for the thermohaline circulations. This calculation also | 
 deep water for the thermohaline circulations. This calculation also | 
| 314 | 
 yields sensitivities to all other model parameters. | 
 yields sensitivities to all other model parameters. | 
| 315 | 
  | 
  | 
| 316 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 317 | 
 \input{part1/adj_hf_ocean_figure} | 
 \input{s_overview/text/adj_hf_ocean_figure} | 
| 318 | 
 %%CNHend | 
 %%CNHend | 
| 319 | 
  | 
  | 
| 320 | 
 \subsection{Global state estimation of the ocean} | 
 \subsection{Global state estimation of the ocean} | 
| 335 | 
 1992-1997. | 
 1992-1997. | 
| 336 | 
  | 
  | 
| 337 | 
 %% CNHbegin | 
 %% CNHbegin | 
| 338 | 
 \input{part1/assim_figure} | 
 \input{s_overview/text/assim_figure} | 
| 339 | 
 %% CNHend | 
 %% CNHend | 
| 340 | 
  | 
  | 
| 341 | 
 \subsection{Ocean biogeochemical cycles} | 
 \subsection{Ocean biogeochemical cycles} | 
| 343 | 
 <!-- CMIREDIR:ocean_biogeo_cycles: --> | 
 <!-- CMIREDIR:ocean_biogeo_cycles: --> | 
| 344 | 
 \end{rawhtml} | 
 \end{rawhtml} | 
| 345 | 
  | 
  | 
| 346 | 
 MITgcm is being used to study global biogeochemical cycles in the ocean. For | 
 MITgcm is being used to study global biogeochemical cycles in the | 
| 347 | 
 example one can study the effects of interannual changes in meteorological | 
 ocean. For example one can study the effects of interannual changes in | 
| 348 | 
 forcing and upper ocean circulation on the fluxes of carbon dioxide and | 
 meteorological forcing and upper ocean circulation on the fluxes of | 
| 349 | 
 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows  | 
 carbon dioxide and oxygen between the ocean and atmosphere. Figure | 
| 350 | 
 the annual air-sea flux of oxygen and its relation to density outcrops in  | 
 \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its | 
| 351 | 
 the southern oceans from a single year of a global, interannually varying  | 
 relation to density outcrops in the southern oceans from a single year | 
| 352 | 
 simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution | 
 of a global, interannually varying simulation. The simulation is run | 
| 353 | 
 telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown). | 
 at $1^{\circ}\times1^{\circ}$ resolution telescoping to | 
| 354 | 
  | 
 $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not | 
| 355 | 
  | 
 shown). | 
| 356 | 
  | 
  | 
| 357 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 358 | 
 \input{part1/biogeo_figure} | 
 \input{s_overview/text/biogeo_figure} | 
| 359 | 
 %%CNHend | 
 %%CNHend | 
| 360 | 
  | 
  | 
| 361 | 
 \subsection{Simulations of laboratory experiments} | 
 \subsection{Simulations of laboratory experiments} | 
| 373 | 
 stratification of the ACC. | 
 stratification of the ACC. | 
| 374 | 
  | 
  | 
| 375 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 376 | 
 \input{part1/lab_figure} | 
 \input{s_overview/text/lab_figure} | 
| 377 | 
 %%CNHend | 
 %%CNHend | 
| 378 | 
  | 
  | 
| 379 | 
 % $Header$ | 
 % $Header$ | 
| 396 | 
 \ref{fig:isomorphic-equations}). | 
 \ref{fig:isomorphic-equations}). | 
| 397 | 
  | 
  | 
| 398 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 399 | 
 \input{part1/zandpcoord_figure.tex} | 
 \input{s_overview/text/zandpcoord_figure.tex} | 
| 400 | 
 %%CNHend | 
 %%CNHend | 
| 401 | 
  | 
  | 
| 402 | 
 The state of the fluid at any time is characterized by the distribution of | 
 The state of the fluid at any time is characterized by the distribution of | 
| 410 | 
 see figure \ref{fig:zandp-vert-coord}. | 
 see figure \ref{fig:zandp-vert-coord}. | 
| 411 | 
  | 
  | 
| 412 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 413 | 
 \input{part1/vertcoord_figure.tex} | 
 \input{s_overview/text/vertcoord_figure.tex} | 
| 414 | 
 %%CNHend | 
 %%CNHend | 
| 415 | 
  | 
  | 
| 416 | 
 \begin{equation} | 
 \begin{equation} | 
| 661 | 
  | 
  | 
| 662 | 
 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and | 
 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and | 
| 663 | 
 Non-hydrostatic forms} | 
 Non-hydrostatic forms} | 
| 664 | 
  | 
 \label{sec:all_hydrostatic_forms} | 
| 665 | 
 \begin{rawhtml} | 
 \begin{rawhtml} | 
| 666 | 
 <!-- CMIREDIR:non_hydrostatic: --> | 
 <!-- CMIREDIR:non_hydrostatic: --> | 
| 667 | 
 \end{rawhtml} | 
 \end{rawhtml} | 
| 770 | 
 OPERATORS. | 
 OPERATORS. | 
| 771 | 
  | 
  | 
| 772 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 773 | 
 \input{part1/sphere_coord_figure.tex} | 
 \input{s_overview/text/sphere_coord_figure.tex} | 
| 774 | 
 %%CNHend | 
 %%CNHend | 
| 775 | 
  | 
  | 
| 776 | 
 \subsubsection{Shallow atmosphere approximation} | 
 \subsubsection{Shallow atmosphere approximation} | 
| 891 | 
 stepping forward the vertical momentum equation. | 
 stepping forward the vertical momentum equation. | 
| 892 | 
  | 
  | 
| 893 | 
 %%CNHbegin | 
 %%CNHbegin | 
| 894 | 
 \input{part1/solution_strategy_figure.tex} | 
 \input{s_overview/text/solution_strategy_figure.tex} | 
| 895 | 
 %%CNHend | 
 %%CNHend | 
| 896 | 
  | 
  | 
| 897 | 
 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
| 1080 | 
  | 
  | 
| 1081 | 
 The mixing terms for the temperature and salinity equations have a similar | 
 The mixing terms for the temperature and salinity equations have a similar | 
| 1082 | 
 form to that of momentum except that the diffusion tensor can be | 
 form to that of momentum except that the diffusion tensor can be | 
| 1083 | 
 non-diagonal and have varying coefficients. $\qquad $ | 
 non-diagonal and have varying coefficients. | 
| 1084 | 
 \begin{equation} | 
 \begin{equation} | 
| 1085 | 
 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | 
 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | 
| 1086 | 
 _{h}^{4}(T,S)  \label{eq:diffusion} | 
 _{h}^{4}(T,S)  \label{eq:diffusion} | 
| 1492 | 
 \end{equation*} | 
 \end{equation*} | 
| 1493 | 
  | 
  | 
| 1494 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1495 | 
 v=r\frac{D\varphi }{Dt}\qquad | 
 v=r\frac{D\varphi }{Dt} | 
| 1496 | 
 \end{equation*} | 
 \end{equation*} | 
 | 
 $\qquad \qquad \qquad \qquad $ | 
  | 
| 1497 | 
  | 
  | 
| 1498 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1499 | 
 \dot{r}=\frac{Dr}{Dt} | 
 \dot{r}=\frac{Dr}{Dt} | 
| 1503 | 
 distance of the particle from the center of the earth, $\Omega $ is the | 
 distance of the particle from the center of the earth, $\Omega $ is the | 
| 1504 | 
 angular speed of rotation of the Earth and $D/Dt$ is the total derivative. | 
 angular speed of rotation of the Earth and $D/Dt$ is the total derivative. | 
| 1505 | 
  | 
  | 
| 1506 | 
 The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in | 
 The `grad' ($\nabla $) and `div' ($\nabla\cdot$) operators are defined by, in | 
| 1507 | 
 spherical coordinates: | 
 spherical coordinates: | 
| 1508 | 
  | 
  | 
| 1509 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1513 | 
 \end{equation*} | 
 \end{equation*} | 
| 1514 | 
  | 
  | 
| 1515 | 
 \begin{equation*} | 
 \begin{equation*} | 
| 1516 | 
 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial | 
 \nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial | 
| 1517 | 
 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} | 
 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} | 
| 1518 | 
 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} | 
 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} | 
| 1519 | 
 \end{equation*} | 
 \end{equation*} |